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Abstract

The real time strategy (RTS) tactical decision making problem is a difficult problem.

It is generally more complex due to its high degree of time sensitivity. Not only must

a variety of unit maneuvers for each unit taking part in a battle be analyzed, the

decision must be made before the battlefield changes to the point that the decision is

no longer viable. This research effort presents a novel approach to this problem within

an educational, teaching objective. Particular decision focus is target selection for a

artificial intelligence (AI) RTS game model. The use of multi-objective evolutionary

algorithms (MOEAs) in this tactical decision making problem allows an AI agent

to make fast, effective solutions that do not require modification to fit the current

environment. This approach allows for the creation of a generic solution building

tool that is capable of performing well against scripted opponents without requiring

expert training or deep tree searches.

The RTS AI development occurs in three distinct phases. The first of which is

the integration of a MOEA software library into an existing open source RTS game

engine. This integration also includes the development of a new tactics decision

manager that is combined with the existing Air Force Institute of Technology AI

agent for RTS games. The next phase of research includes the testing and analysis of

various different MOEAs in order to determine which search method is most optimal

for the tactical decision making problem. The final phase of the research involves

analysis of the online performance of the newly developed tactics manager against a

variety of scripted agents. The experimental results validate that MOEAs can control

an on-line agent capable of out performing a variety AI RTS opponent test scripts.
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TACTICAL AI IN

REAL TIME STRATEGY GAMES

I. Introduction

This research aims to improve on current RTS Artificial Intelligence (AI) method-

ologies by introducing the concept of utilizing Multi-Objective Evolutionary Algo-

rithms (MOEAs) to quickly determine tactical actions to take in combat without

relying on search trees or expert data [7]. RTS games, along with video games in

general, provide an attractive means to test out these new AI techniques due to

their broad range of environments and lack of costs that real-world experimentation

requires [8]. The current state of an RTS game is also constantly changing, which

introduces a level of time-sensitivity which increases the necessity for quick decision

making.

1.1 Military Decision Making

The US Military holds the education of its forces as one of its major responsibili-

ties. The Air Force has an entire Major Command dedicated solely to this purpose,

Air Education and Training Command (AETC) [9]. One of the roles of AETC is

the training and development of officers with regard to strategic and tactical deci-

sion making. This decision making training is provided through many means, one of

which is to have officers perform various command level roles in a custom built RTS,

Tactical Airpower Visualization (TAV) [10]. Officers are taught many problem solv-

ing approaches prior to the exercise with TAV. One of the most important of these

processes is the OODA loop. OODA stands for Observe, Orient, Decide, and Act,
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and was originally developed by John Boyd as a process to aid in decision making

[1]. The OODA loop is a four step decision making process which places emphasis

on a linear decision making pattern that can be used in many situations. First, the

user must Observe, or gather data pertaining to the problem at hand. Then the user

must Orient, or determine the potential effects from various decisions that could be

made for the problem. Then the best one of these potential solutions is Decided

and Acted upon. Once performed the user must go back and examine whether the

intended effects took place and if the problem is resolved. The research performed in

this thesis investigation replicates this four step process by utilizing MOEAs to make

a decision based on immediately available data and with no prior knowledge of the

opponents play style or decision making capacity.

1.2 Real Time Strategy Games

RTS games are a genre of video game which “are essentially simplified military

simulations [11].” In an RTS game, a player is responsible for developing an economic

supply life for his army via natural resources or other means, and then exploiting

these resources to produce and maintain a sizable military. The player then uses

this military to seek out and destroy enemy players. Each player’s approach to the

battle can be different, but the end state is based heavily on the strategic and tactical

decisions the player makes throughout the campaign.

The decision making required in an RTS game is very complex, as the game state

is constantly in flux. There are many segments of decision making in an RTS game as

well, which can all significantly affect the player’s capacity to win. Initially the player

must split effort between economic development and military development. A poor

decision at the start can significantly handicap a player’s future efforts by affecting

how many resources and units are available to repel enemy attacks. Even with a
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proper base set up the player must still control individual units in battle. There

are AE potential attack combinations, with A representing the number of units in

the player’s army and E representing the number of enemy units. This is further

compounded by different unit armor, attack power, and ranges. A good RTS player

or agent must be able to make sound decisions in each of these environments in order

to win.

Strategy in Real Time Strategy Games.

Strategic decision making in RTS games are typically modified by changing the

focus of development between military, defense, or economy. Each strategy requires

that the player or agent hit various tech levels. Higher tech levels in RTS games allow

for the development of more powerful units. For example, a player at tech level 1

may have access to basic infantry units. Tech level 2 may allow for light vehicles and

rocket lauchers, and tech level 3 may allow the player to begin constructing tanks.

Players and agents enact different strategies by pursuing the requisite tech level for

their strategy, and then begin creating armies [12]. AI agents also have the benefit of

being able to “cheat”, or gather economic more quickly than what a human player is

capable of. This modification of resource acquisition capacity allows for an AI agent

to counter the human’s ability to learn and predict a particular agent’s strategy. By

improving resource acquisition the agent is more likely to overwhelm a human player

before effective countermeasures can be created.

The selection of a good strategy heavily affects the chance of victory between

players. Many strategies have distinct counters, and modifying one’s chosen strategy

to counter the opponent’s gives the player a distinct advantage in the long term per-

formance of the game [6]. The rate that a player is capable of building up a base

and army also affects the overall outcome of the match. If a player is able to outpro-
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duce the opponent the player has a higher chance of winning as a higher production

leads to larger, more powerful armies. This production is based on the build order

of buildings and units, which, if optimized, can create noticeable improvements over

base strategies [5].

Targeting in Real Time Strategy Games.

There are many methods currently used for tactical decision making in RTS games,

otherwise known as “micro” for micromanagement of individual units and forces in

combat. Some of the fastest decision making tools are scripted attack methods. In

a scripted tactic the agent looks for a particular element or statistic of enemy forces

and engages the enemy with the most extreme value. This could be proximity (i.e.

attack closest), remaining hit points (i.e. attack weakest), or some other value (e.g.

attack lowest armor, attack fastest, attack most damaging). Other attack methods

rely on in-depth tree searches or other single objective evolutionary algorithm searches

with constraints [11, 13]. These methods can require previous training or an amount

of calculation time which prevents on-line play. In each of these cases the agent

has the potential to fall short in decision making as the focus on a single objective

can results in sub-optimal solutions being selected. The research performed in this

paper implements a Multi-Objective Evolutionary Algorithm (MOEA) to face against

various scripted agents and then compares the results against other tested tactical

decision making methods.

1.3 Research Goal

The goal of this research is to develop and test an extension to the currently

existing The Air Force Institute of Technology (AFIT) AI agent for the Spring RTS

Engine. The AFIT agent has been under constant work, with previous upgrades
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improving strategic decision making and build order optimization [6, 5]. This next

extension controls the tactical combat maneuvers and firing solutions for individual

units in an effort to optimize their outgoing fire and maximize their survivability. The

completed tactical agent is expected to be brought into some of the currently existing

RTS AI competitions such as StarCraft [14].

1.4 Research Objectives

The research performed in this thesis investigation is based on achieving the fol-

lowing objectives:

1. Develop a custom MOEA RTS AI technique which represents a tactical decision

making process

2. Evaluate the offline performance of various MOEAs on this RTS tactical decision

making process

3. Evaluate the online performance of an MOEA based agent against various

scripted tactical agents on the Balanced Annihilation mod of the Spring RTS

Engine

1.5 Research Approach

The research and concept behind implementing MOEAs in a tactical environment

are a continuation of the research from another AFIT student, Jason Blackford [5].

In his thesis, Blackford is able to create newer, better solutions for build orders that

can outproduce other agents via MOEA analysis. The implementation of an MOEA

in the strategic decision making area of the RTS game is proven to have a noticeable

positive effect. This research shows that the MOEA can be brought into the tactical

portion of RTS gameplay and is a viable option for optimizing unit targeting.
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The first step of this research is to integrate this previously developed agent with

a freely available MOEA framework. This step is critical in order to allow an agent

to access and analyze the results of an MOEA. Once complete, the agent is then able

to implement the solution provided by the MOEA in an on-line manner.

After the MOEA software is integrated into the AFIT agent, various MOEAs are

selected and tested against each other on the tactical decision making problem. The

objective of this portion of the research is to find an MOEA which is capabile of

quickly finding good solutions for the tactical decision making problem. Performance

is based on speed of solution as well as the analysis of the resulting Pareto front via

metric analysis.

The research culminates in an online test between the MOEA controlled agent and

a variety of scripted opponents. The goal is to determine how well an MOEA serves

as a tactical decision making tool and if it is viable in an online environment. These

tests are measured with a performance focus of the army over the conflict length.

1.6 Thesis Organization

The remaining sections of this thesis cover the entirety of the process, analysis,

and conclusions relating to the tactical decision making research. Chapter II provides

background information that is useful in understanding the processes and purpose

behind this research. Chapter III provides an design methodology of the MOEAs

being compared, techniques for measuring the “value” of a particular result, and how

these MOEAs are expected to react in an on-line performance. Chapter IV contains

the design of experiments and states states specifically how the experiment is being

performed, with Chapter V providing an in-depth analysis of the results that are

obtained. Chapter VI provides an overarching conclusion for the entire development

process and also provides feedback on future efforts.
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II. Background

This chapter provides a base level of information about some of the major themes

in this thesis research, such as decision making techniques, RTS games and plat-

forms, and an overview of strategic and tactical planning. The chapter continues into

a overview of past AFIT research papers that investigate new improvements with

regards to AI agents for RTS games, as well as a discussion of current tactical RTS

agent research taking place. Finally, the chapter ends with an explanation of the

purpose of this research and how it progresses the current state of RTS AI tactical

decision making techniques.

2.1 Decision Making

Before creating a method to improve AI agent decision making, the individual com-

ponents of decision making must first be understood. Any decision making method

requires two primary components - an input of data and a plan of how to manage

the data that has been provided. The generation and utilization of the initial data

is important as the analysis of too much data can negatively affect the time required

to make a proper decision, while too little information increases the likelihood of a

sub-optimal solution being used. Malcolm Gladwell discusses a method of optimiz-

ing the amount of information used in making decisions via a technique called “thin

slicing” [15]. Once acquired, the information that has been gathered is passed into

a decision making process. The decision making process most familiar to Air Force

Officers relies on four distinct phases. These phases are Observe, Orient, Decide,

and Act; the technique is named the OODA Loop [1]. This methodology is taught

in officer training throughout the first years of an officer’s career in various training

programs[16, 17].
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Figure 1. Boyd’s OODA Loop [1]

OODA Loop.

The OODA loop is a decision making process that stands for Observe, Orient,

Decide, and Act. This process is meant to be a universal decision making process

that can be used to choose courses of action in a variety of situations. The overall

process can be seen in figure 1.

Observe.

In the observe phase of the OODA loop the user is taking in as much information

as possible. For the purposes of an RTS AI agent, this phase represents the computer

gathering information about the current game state. This includes map positions,

unit statistics, and other information that is readily available. No processing of the

data is done at this time.

Orient.

The orient phase analyzes the information gathered from the observation phase.

In the AI agent this represents the actual analysis of the battlefield. This is the

analysis and prioritization of targets based on their attack power, hit points, and

8



map locations. Future iterations could include the attack bonuses versus different

types of enemy units or even the strategic usefulness of a battlefield. The information

from this phase is used to continue to the next phase of the OODA loop.

Decide.

The decide phase is simply to decide on a course of action based on the information

from the orient phase. In the AI agent this represents the analysis of a course of action

chosen by the evolutionary algorithm. Each member of the population represents a

different “decision”

Act.

The act phase is for performing and testing the outcome of the chosen course of

action. In the MOEAs used for the agent, the act phase is performed during the

objective analysis at the end of each member of the population. The action and

testing of each member of the population determines the relative “goodness” of each

decision and can be used to reorient the agent for future decisions.

Incomplete OODA Loops.

One of the primary issues of the OODA loop is to get stuck in incomplete decision

loops. One of the most prevalent of these incomplete loops is to be stuck in a constant

analysis phase without ever making a true decision. This is represented by OO-OO-

OO [18]. This problem arises when solving a problem is either too complex or the

problem has changed before a solution has been found. In the RTS environment both

of these issues can be represented in the same manner. In an RTS game, a battlefield

decision must be made quickly in order to be useful. Every second of computation

time introduces more potential error into the solution due to the way objectives are

9



managed. Unit hit points, location, or even the number of remaining units can change

over the course of a short amount of time in a RTS game, and these changes can lower

the reliability of a solution or even invalidate it. One of the most important things to

keep in mind in the development of an AI algorithm is to ensure that it can quickly

make decisions in complex environments.

Thin Slicing.

The concept of thin slicing is introduced by Malcolm Gladwell in his book Blink

[15]. In this book Gladwell goes into detail on how some decisions are quickly made

subconsciously using very little information. He goes further to say that if a person

is well trained, these snap judgments can be more correct than if the person in ques-

tion took the time to perform an in-depth analysis to verify their snap judgment. He

defines this concept of making a snap decision using only the most basic, critical infor-

mation as “thin slicing”. The experiment process utilized in this research attempts to

replicate this idea for combat situations by pursuing a “good enough” decision based

on information currently observable to the player/agent and disregarding informa-

tion that comes from more in-depth analytic methods. This technique allows RTS

games to make better decisions based on information that is readily available, which

minimizes the amount of computation required to generate a targeting solution.

Making Decisions with Current State Analysis.

A popular method of decision making in games or battle simulations is to attempt

to fully analyze all potential outcomes from a particular decision point before making

a choice. The issue that arises from this course of action is that while a simple

game such as chess or checkers has a limited number of pieces and a small set of

potential moves, the number of pieces and moves can introduce an exponential level
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of complexity to the problem. Another problem to consider is that while in chess and

checkers the other side cannot move during a players turn, in battle the opponent has

no such limitation. This exacerbates the already complex problem by introducing a

factor of timeliness to any potential decision making process. This causes issues at

larger battle sizes where the time required by an algorithm prevents it from providing

solutions quick enough when then makes any potential solution supplied out of date on

arrival. The approach of attempting to simulate every outcome in order to choose the

best solution is similar to the approach used by the US Armed Forces in Millennium

Challenge 2002. In this challenge US forces (“Blue Team”) had so many rules and

so much knowledge that it prevented them from being able to respond quickly to the

much freer enemy forces (“Red Team”) controlled by Lieutenant General Paul Van

Riper (RET) [15].

RTS games, due to their purpose or role as battlefield simulations can carry over

many of the intricacies of actual combat. These intricacies can cause a complex tactic

searching method to become bogged down much like the Blue team forces in an actual

wargame. The research performed seeks to prevent a slowdown in decision making

due to the pursuit of a full analysis for the pursuit of a “perfect” solution and instead

aims to generate solutions that steadily improve the AI agent’s status in comparison

to enemy forces through the battle.

Research Goal.

The purpose of this investigation is to develop an RTS agent that handles tactics

and combat quickly and efficiently by only analyzing a few specific metrics in the

current battlefield state. The overall goal is to analyze a battlefield in a way similar

to the method created by Lee Goldman to manage heart attack patients at the Cook

County ER [15, p126]. In his experiments, Goldman found that the best decision
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can often be found by focusing on a few objective metrics to determine a patient’s

heart attack risks. This solution is quick, since it only needs to process a few test

values, and more important this solution is effective, with a successful detection over

95 percent of the time. The agent developed for the purpose of this paper aims to

mimic this result by taking a quick look at the current status of a battle and using a

few objective values to quickly determine the immediate best course of action.

The overall goal of this research is to develop and test the usefulness of MOEAs in

tactical decision making by comparing the MOEA agent’s performance against more

in depth search methods. The battlefield is simplified into a few easy to measure

metrics which are then compared against each other in order to choose an optimal

solution. This method of search is in contrast to a more intensive search which aims

to seek out good choices by measuring the battle’s outcome.

One of the critical areas to be wary of when designing an algorithm that quickly

evaluates the current state of affairs is that strictly limiting time can have adverse

effects on solution quality. This is also brought up in Gladwell’s book in the line

“When you remove time, you are subject to the lowest quality intuitive reaction” [15,

p. 231]. Any analysis performed must be quick, but thorough. There must be enough

testing in order to ensure that the objectives result in solutions that are reasonable

and feasible.

2.2 Real Time Strategy (RTS) Games

RTS games are a type of war game in which a player needs to simultaneously

manage the military and economic requirements of an army in order to use that army

to destroy an enemy. RTS games typically require the player to focus on both long-

term and short-term requirements. A player that focuses too much on short term

gains will likely not have the resources to carry out an extended campaign, while a
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player who is too busy laying the foundation for an end strategy without considering

short term goals can find themselves vulnerable to a faster opponent.

Figure 2. Screenshot of Cosmic Conquest [2]

RTS games have been developed to represent battles in a variety of time lines and

locations. One of the first commercially available games focusing on the strategic

management of forces used to conquer territory is Cosmic Conquest [2]. Relatively

simple by today’s standards, the goal of cosmic conquest is to capture more of the

known galaxy than the computer opponent. A player needed to split resources be-

tween ground legions or space fleets and use these legions and fleets to capture other

planets which provided the player even more resource generation over the course of

the game. The choice of locations to send forces affected future points in the game,

as fleets required traveling distance and planets gave varying amounts of resources.

A screenshot of this game can be seen in Figure 2. This relatively simple concept

behind a game of strategic decision making eventually evolved to the RTS genre as

it is known today. A brief history of RTS games is presented in order to provide the

reader with an overview of the progress and capabilities of the RTS genre and how

they can be applied to military simulations.

13



Dune II.

Figure 3. Screenshot of Dune II [3]

Dune II stands as a landmark in the development of RTS games. It is the first

game which combined various concepts that became a standard in RTS games for

years to come. The game combined optional mission location selection, resource

gathering as a means of economic development, base development, technology trees,

and multiple playable factions in a way that had not been previously used in the

genre. This combination of options became a template for future RTS games for a

long period of time and is still seen as the template for a standard RTS game. The

Graphical User Interface for Dune II is still used as the standard for RTS games in

terms of providing a player with the necessary information to control their forces

during a game, and can be seen in Figure 3 [19, 20].

WarCraft.

WarCraft and its sequels WarCraft II and WarCraft III serve as one of the pillars

of current RTS games [21]. Located in a fantasy realm of Azeroth, the game initially

put two armies against each other, humans and orcs, with each faction having its

own set of allies. Later expansions introduced additional races and other fantastic

creatures and worked at developing the story of the realm which would eventually
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Figure 4. Screenshot of Warcraft [4]

became the World of WarCraft. Through each of the initial games, however, the

overall goal of the player is the same. In each game the goal is to build up a base,

gather enough resources to maintain an economy, and then construct an army to

destroy the opposition. Figure 4 shows a depiction of an orc base. The base setup

has become more complex in comparison to Dune II, with multiple forms of currency

being required for unit and building construction. A player must balance the amount

of gold and lumber they have and also maintain enough farms to feed all of their

constructed units.

StarCraft.

StarCraft can be thought of as simply WarCraft in space, with additional me-

chanics and in a different environment. While humans still exist, they are now known

as Terrans and have armies which focus mainly on mechanical support and ranged

attacks. The terran army operates most similarly to Warcraft. The player must still

balance food (supply depots), and two other resources (minerals, vespene gas). There

are two new armies available for players to control as well: the Protoss and Zerg. Each

of these new races introduce drastically new ways to manage base construction and

management. The Protoss represent a hyper-futuristic race with psionic abilities and
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shields. While individually more expensive, the shields of the Protoss units provide

a level of survivability and regenerative capacity unavailable to other armies. Their

buildings require access to pylons, a dual purpose building which serves as both a

supply depot as well as a power plant. The loss of these pylons not only reduces max-

imum army size but also severely limits the capabilities of any nearby structures. The

other new race are the Zerg which are a semi-parasitic alien race that contaminates

and consumes neighboring worlds. Their buildings are organic and require a builder

unit to evolve into the building which causes the loss of the building unit. This race

builds extremely quickly compared to the Terrans or Protoss and can evolve into

very role specific organisms. This means that if left unchecked, the Zerg can simply

overwhelm enemies in the initial stages of a game. This quick buildup and attack of

units led to one of the most iconic strategies in the RTS world, the “Zerg Rush”.

Tactical Airpower Visualization.

TAV is one of the most current iterations of the Air Force’s approach to modeling

and simulation of a campaign via RTS gaming [10]. Used throughout the training

courses available at Maxwell Air Force Base for officer training, the game has been

used in Officer Training School, the Air and Space Basic Course, and Squadron Officer

School. Each class considers a different scenario with simulated conflicts spanning

the globe and covering a variety of potential situations Air Force officers may find

themselves facing in their career. It should be noted that the span of the courses

that use TAV cover the initial years and ranks of a junior officer’s career. Officer

Training School is one of the introductory routes to becoming an Air Force Officer.

The Air and Space Basic Course, while no longer available, was the mid-term school

for Lieutenants and officers were expected to attend near their two year point in the
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military. Squadron Officer School is the Captain school, which officers are expected

to attend between their four to seven year point.

The important thing to note about TAV is the fact that it is a completely team

based affair. A single player is completely incapable of winning on their own due to

the method of control of the units. While most commercial RTS games give a single

player complete control of the entirety of their forces, TAV takes a different approach.

In order to emulate how the military is organized, each player has command of a group

of units focused on a single goal. For example, one player is be given command of all

strategic assets to be used for the campaign. This player (often with a second person

playing as a counselor/vice commander) has complete control of all bombers used in

the campaign. It is this player’s job to work with other units, particularly the players

responsible for any air superiority fighters in the area, in order to provide a safe

ingress/egress routes for their bombers to attack. Failure to perform this planning

results in the computer destroying most if not all of the bombers available to the

group during this campaign.

In order to facilitate the required level of teamwork, a single player is chosen to

be the overall commander. This player cannot give any orders to units in the game,

in fact this player does not even have a computer terminal of their own. This player’s

job is to act as a liaison between the various players and ensure that everyone is

working towards the goal. They also have the ability to remove players from play

if they are violating current orders, and can force the observer (vice commander) to

take over for the now defunct commander.

One of the main issues with this program is that it is heavily scripted. Enemy

planes take off at set intervals and perform a specific course of action until a player

interferes in some way. This makes it possible for a player to effectively solve the game.

If a certain scenario can be played infinitely, with the computer performing the same
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thing every time, it is possible for that player to find a way to complete the campaign

quickly and efficiently due to the exploitation of the game’s AI. Therefore the goal

of this research, as well as the research that precedes it, is to create a more “human”

AI that can add a level of strategic and tactical thinking to training simulations to

provide a higher level of training available to Air Force officers.

Combining First Person Shooters with RTS Games.

One of the newer fields of the RTS genre is the inclusion of First Person Shooter

(FPS) themes. In an FPS a player is typically only responsible for controlling them-

selves, and are expected to work together with a team in order to capture or kill

enemies. Some games have been released that combine this aspect with RTS play,

the first of which being the Natural Selection modification for the CounterStrike

framework. In Natural Selection the FPS action is split between two opposing fac-

tions - humans and aliens. While aliens are able to work and act independently,

the humans are reliant upon a Commander. This Commander views the game as a

RTS, with a top down view of all friendly units. This combination of RTS and FPS

play allows for the introduction of interesting mechanics as the Commander is able

to issue orders but is reliant upon each individual player to respond and fulfill the

order in their own manner. This concept has been brought into other games since

then, notably a mod for the Spring RTS Engine which allows players to take direct

control of individual units. This combination of large scale warfare with the control

of individual units may eventually lead to fully integrated wargaming scenarios where

every unit on the field is directly controlled by a human user.
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2.3 RTS Platforms

The selection of an RTS platform for agent development can be just as important

as the selection of the game mode. The platform can serve as a restriction on future

capabilities based on the manner in which it is implemented. Most commercially

available RTS games are developed on proprietary platforms, which means that out-

side developers or modders have a difficult time deciphering specific commands and

event flags. This can hinder attempts to have an agent interface correctly with the

agent, and can also reduce the effectiveness of trying to change some aspects of the

game in order to meet different objectives.

Wargus.

WarGus is a Stratagus based environment for the Warcraft 2 game. This adap-

tation of Warcraft 2 into the open source Stratagus engine allows for game and envi-

ronment manipulation unavailable in the original Warcraft 2 engine. It is important

to note that many components of Wargus require data from a valid Warcraft 2 in-

stallation. Wargus cannot be used as a true stand-alone game environment [22, 23].

SparCraft.

SparCraft is a combat simulation engine for the Starcraft RTS game. It provides

users with a way to test and analyze the performance of bots specifically made for the

StarCraft engine. Currently the SparCraft environment fully replicates unit damage,

armor, hitpoints, and research, but does not account for acceleration, collisions, or

area of effect damage [24].
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Spring RTS Engine.

The Spring RTS Engine [25] contains many options that are useful to RTS re-

search. Some of the most important of these options are visualization, animation,

unit customization, and the fact that it is open source.

Visualization.

The visual capabilities of the Spring RTS Engine are an important factor to con-

sider when creating an agent that is meant to simulate theoretical military battles.

Unit models can be changed and the landscape terrain features can be modified as

needed. This allows for scenario modification and customization, which in turn allows

a user to test potential strategy and tactical outcomes in a simulated environment

Animation.

The animation portion of the Spring RTS Engine, and any RTS engine, provides a

visual feedback to the user of how battles progress through time. While simpler simu-

lation programs may be able to provide a numerical analysis of a battles conclusion or

state at a specific time, an animated progression allows users to have a direct feel of

the flow of battle. This allows a user to learn and eventually hypothesize the outcome

of certain situations and change their strategic or tactical decisions as needed.

Unit Customization.

One of the most powerful capabilities that the Spring RTS Engine brings to the

table is the ability to generate and implement new unit types. This allows further

customization of the battlefield in order to replicate an expected encounter. The

capabilities included in the Spring RTS Engine’s code go as far as introducing a

unit’s turn rate, turret turn rate, and attack rating against different types of targets.
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This provides a means for planners to input specific unit capabilities based on current

intelligence.

Open Source.

The most useful aspect of the Spring RTS Engine with regards to applying an

externally generated AI agent is the fact that it is open source. As an open source

program, all code pertaining to the program is readily available and once deciphered

can be used to improve the application of any agent. The open source factor also

includes the ability to create new interrupts or event flags which a user can build to

occur at very specific situations - further improving the customization of this software.

2.4 Strategic Decision Making

The concept of strategy encompasses the goal of achieving a set objective or ob-

jectives while being restricted by a set of constraints. The decisions made in the

development of a strategy are generally higher level, with a leader’s choices affecting

a large amount of people or resources. Strategy can be used in many environments,

be it business management, military engagement, or personal finance. In warfare,

strategy can be used to accomplish a military leader or country’s goals. The goals of

military encounters change based on the strategist, with leaders such as von Clause-

witz establishing that victory in a battle should be determined by decisive battles

of annihilation or a slower series of battles of attrition, effectively tying victory di-

rectly to the remaining military power of the opponent [26]. Other leaders such as

Antoine-Henri Jomini focused instead of the geometry of battle, attempting to find

a method to compare military strategic decision making to a mathematical formula

or ideal series of decisions. In Jomini’s approach victory did not require destruction

of the enemy - victory can also be gained by sufficient acquisition of territory or re-
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Figure 5. RTS Strategic Planning Tree [5]

sources [27]. In either case, the objective of military strategy can be victory via the

destruction of enemy forces or the capturing of enemy territory and causing a rout.

Strategic Planning in RTS games.

The strategic planning of an RTS game covers the same objectives as a standard

military confrontation. In most RTS games the objective is complete destruction of

the enemy, with some versions describing victory as the elimination of any manufac-

turing ability or the conquest of a specific portion of the game map. These goals

are accomplished through the development and application of a series of construc-

tion actions, otherwise known as a build-order [5]. The build-order is responsible for

moving a player through various technological development stages and can improve

a player’s unit construction ability. For example, a technical level of 1 may allow a

player to build basic infantry, level 2 may introduce more advanced unit types such

as flamethrowers or heavy machine guns. Level 3 may build off this further and allow

the player to begin building larger assets such as tanks or other vehicles.
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Figure 5 shows a variety of methods used to plan strategies in an RTS game.

The first distinction to make is the initial option between behavioral planning or

optimization. Behavioral planning is an approach based on either learned or trained

courses of action. The expectation for this type of strategic planning is that the agent

is provided a set of data that represents expert players decisions on build orders. The

agent takes this data, develops a case based reasoning methodology of what to build,

and utilizes this to mimic expert players. A potential fault in this method is the fact

that “expert” is a very loosely defined term in the RTS world, and that an agent may

not be effective against opponents using unknown strategies [5].

The remaining path in figure 5 represents optimization via performance based

metrics. The thought on this section of the tree is to ignore the concept of providing

an agent with external data based on expert play, and instead to allow the agent to

create its own decisions by maximizing or minimizing a series of functions that provide

a value to the current state of a game. Given a suitable function an optimization based

strategy can play at the same level or better than expert level players, but has the

issue of an increased level of computational time [5].

2.5 Tactical Decision Making in Combat Scenarios

If strategy is the overall plan made before approaching a specific problem, then

tactics is the series of smaller decisions made to fulfill the strategy. Tactics represent

the actions and specific utilization of resources in order to make progress towards

completion of a specific goal or objective. Tactics can change based on the situation

at hand. In military encounters tactics encompass the formation of units, position

of forces, and manner of attack. Tactics can take into account choke points and

environmental aspects. In short, if a strategy is to perform a task, the tactics define

how exactly that task is performed.
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Figure 6. RTS Tactical Planning Tree

Tactical Planning in RTS games.

Tactical decision making in an RTS game focuses on the micromanagement of

individual units or groups of units. Micromanagement is an extremely important

aspect in competitive StarCraft play, with top earning professional StarCraft player

JaeDong stating that in StarCraft: Brood War his ability ability to control the mi-

cromanagement “made me different from everyone else in Brood War, and I won a lot

of games on that micro alone.” . He then continues to say that micro is more impor-

tant in StarCraft II than it was in StarCraft: Brood War [28]. These statements by

one of the top players in the professional RTS world show that the ability to control

the micromanagement of units is important, and that future games may increase the

requirement of mastering this skill set. Micromanagement includes movement deci-

sions, where to attack, how to attack, and how to maneuver in battle. Movement

decisions focuses on the distribution of forces at the beginning of an attack. Units

can be grouped tightly together or split up in various smaller groups in order to en-

able flanking or ambush attacks. The decision on where to attack could be a players

decision to wait for enemy units to pass through a choke point which would maximize

the ratio of friendly units to enemy units engaged in the fight. How to attack is the
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method of choosing distinct targets for each unit participating in combat. Finally the

maneuvering during combat references tactical retreats or “kiting”, which is when a

player moves within range to fire a volley and then retreats out of the opponents range

to reload. The research done in this paper seeks to optimize the targeting portion of

tactical decision making.

Figure 6 presents a variety of target acquisition methods available to AI agents.

The simplest type of decision making tool is a strict scripting method. These types of

methods analyze the current status of enemy units and makes a decision based on a

single metric. These techniques are very fast, but are open to exploitation by players.

The non-scripted methods of attack involve using similar methods to the strategic

development options shown in Figure 5. The Monte Carlo Tree Search (MCTS)

method analyzes the current state of a battle as if it is a static turn based game such

as chess. It takes the time to determine potential outcomes and provides a scalar

weight to each option. Another method of using a non-scripted learning method is

to provide a set of expert data to the agent or allowing the agent to run through

multiple simulations to generate its own data, as in the strategic decision making

process. This expert data can be used to have the agent mimic an expert player’s

decision methods. Finally, an MOEA can be used to create an attack solution based

on currently available information that would assign each unit a target with the goal

of outperforming the capacities of a human player.

2.6 Previous AFIT Developments

The agent being modified by this research topic has been in development for four

years, with Jonathan Di Trapani’s work in 2012 and Jason Blackford’s additional

work in 2013 serving as the most recent improvements. The objective for each step

of the development of the agent is to build on and improve a customizable RTS AI
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agent that can be used as a means to train military members in strategic and tactical

decision making.

Adaptive Response - Weissgerber’s Agent.

Weissgerber’s work in 2010 created an agent that is capable of reacting to the

current situation of an RTS game by analyzing and acting on a subset of “features”

which are capable of encompassing the the current state of the game [29]. Weissger-

ber’s research culminated in an agent capable of outperforming the scripted agents

that faced it by analyzing those scripted agents’ previous performance and developing

an active counter strategy. This counter strategy is 100% effective against the tested

strategies, quickly analyzing the current state of a game and choosing decision paths

which led to “win” states by optimizing the state of the “features” used to represent

the game’s status.

Strategy Optimization - Di Trapani’s Agent.

Di Trapani’s agent seeks to develop a means of identifying and countering an

incoming wave of enemies [6]. This research is a continuation of the work performed

by Weissgerber [29] and works to build a variety of different strategies to determine

the effectiveness of each in various scenarios. In his work Di Trapani determines

the advantages and disadvantages of each strategy tested against all other tested

strategies. The purpose of this initial set of experiments is to determine the counter

to each strategy on each tested map. Once these results are compiled, Di Trapani

tests various classifiers that can be used to determine the enemy’s strategy given a

limited set of data. The purpose of this classifier is to allow the agent to hypothesize

an enemy’s strategy and start building the counter strategy. The result is a distinct
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record of advantageous and disadvantageous options to choose based on the enemy’s

strategy selection.

Build Order Optimization - Blackford’s Agent.

Capt Blackford builds on the work developed by Capt Di Trapani by creating a

method to optimize the strategic decision making done in the initial stages of a game.

His agent, the Build Order Optimization (“BOO” for short) uses a MOEA to optimize

the build order for a given side. The MOEA selected has three objective functions.

The first function seeks to minimize the number of steps required to transition from a

current state to a desired state. For this first objective, the duration of all actions are

equivalent. The next objective function used represents the amount of consumable

resources required to move from a current state to a desired state. This objective

does not have uniform costs like objective 1, so objective 2 is able to generate a

more specific solution. The final objective simply takes the time requirements of each

action in a solution string and compares them to each other. The goal of this third

objective is to minimize the time required to complete a build order, otherwise known

as a makespan [5]. The end result of Capt Blackfords research is a MOEA based build

order modification tool that is capable of out-manufacturing bots currently available

for the Spring RTS Engine.

Tactics Optimization - AFIT Agent Continuing Work.

One of the most difficult problems that has developed through continuous im-

provement on the AFIT agent is the understanding of the code. As with any project,

understanding another person’s code can be a difficult endeavor. In the case of the

AFIT agent this is exacerbated by the use of multiple managers through the AFIT

agent as well as the references to various Spring RTS Engine libraries written in both
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Python and C languages. One approach to the current AFIT agent is to begin a

cataloging and reference building of how all of the agents work together. Other ar-

eas the agent is lacking is the fact that the agent currently requires full battlefield

awareness - it cannot be used with any sort of “fog of war”, as some of the basic de-

cision making requires the knowledge of the enemy commander location. The agent

can also be improved on tactical decision making since it uses a very simple scripted

algorithm to determine tactics in a battle. The agent can also be improved in the

base construction / manufacturing stage, as it is currently incapable of using multiple

construction units. In short the agent can be improved on almost all fields of play,

as human techniques and ingenuity create or demand consideration of new tactics or

strategies to counter currently used options.

2.7 Current Research in RTS Tactics Optimization

The current research environment for tactical decision making in RTS games is fo-

cused primarily on single objective evolutionary algorithms or making decisions based

on AI learning techniques. Many researchers also focus heavily on applying their tech-

niques to the game of StarCraft. This is likely due to the widespread knowledge of

the game, as well as the availability of AI competitions that a researcher can use to

provide measurable metrics to grade their agent’s performance. Robertson and Wat-

son describe StarCraft as “a canonical RTS game, like chess is to board games, with a

huge player base and numerous professional competitions” [11], in their 2014 analysis

of current RTS AI. Chapter 2 of Roberson and Watson’s review covers tactical AI in

depth, leading to three major tactical decision making techniques prevalent in current

AI research. These techniques discussed in this review are Reinforcement Learning,

Game-Tree Search, and Monte Carlo Planning [11]. Other methods of RTS tactical

decision making include subjects such as genetic algorithms and fuzzy logic decision
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making, but these types of methods are typically used in the strategic decision making

level [30].

Reinforcement Learning.

Reinforcement learning is the concept of providing feedback to the agent based on

the outcome of a specific scenario. One example of this is to have a Markov decision

tree with no weights on each decision - every probability is equal. The agent traverses

the tree until it reaches an end point. If the end point is a win, the agent provides a

positive weight score, if the end is a loss then the agent instead provides a negative

weight or a weight of zero. This weight is back-propagated through the chain of

decisions the agent used to reach the final point. This back-propagation skews the

probabilities for decision points along the tree search, which affects future runs of the

algorithm. This action of testing and then skewing the probabilities eventually leads

to an agent with a decision tree that is heavily weighted towards winning decisions

[31].

Wargus and Case Based Reasoning.

The research performed by Aha et al. is focused on applying the same case-

based reasoning approach used in chess and other genres to the RTS environment.

The RTS environment used for this research is the Wargus platform, an Strategus

based representation of the original Warcraft 2 environment [22]. The result of Aha

et all’s combination of Case based reasoning to tactics/strategy pairings shows that

case based reasoning is capable of performing very well in the realm of RTS games.

After 100 games the case based reasoning agent achieves an 82% win rate, a noticeable

improvement from the original 23% win rate. Aha et al.’s research shows that learning
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techniques are extremely viable in RTS environments as long as enough learning time

is provided against specified opponents [32].

Game-Tree Search.

A game-tree is the representation of a game and its future states as a tree diagram.

The current state is the root node, and each action available at the root node serves

as a branch that goes to a new leaf node representing the result of the action being

taken. Game tree search methods seek out ways to exploit this tree comparison to

find a good solution by limiting the search area by pruning unnecessary branches and

performing different search methods such as depth first search or Min-Max [31].

Starcraft, Sparcraft, and Game-Tree Search.

Churchill has performed numerous experiments into the use of AI techniques for

various RTS problem areas, and has also developed the SparCraft simulation of the

StarCraft RTS game [24]. He also organizes the AIIDE Starcraft AI competition

[14], and has worked with others in order to provide a level of analysis of current

generation RTS AI agents used in these competitions [33]. His own research into

the realm of RTS tactical decision making addresses the use of modified game-tree

searches to optimize the search process [13, 34]. These methods focus on speeding up

the search by trimming “bad” decision areas off of the search tree early on, and more

searching “good” branches more deeply.

Monte Carlo Planning.

The Monte Carlo Tree Search (MCTS) is an approach to tree search problems

by utilizing a Monte Carlo decision making process [35]. A tree search is a search

methodology where various states in a problem can be represented as nodes, each
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node other than the root node must have a parent, and each parent can have multiple

children based on what decision options are available at the parent node. The search

evaluates each child and eventually determines an optimal course of action based on

the scores. The final solution is the path that leads to the best solution.

The Monte Carlo decision making methodology is a semi-random way of choosing

a solution. The idea is that if the average outcome of a decision at a specific point

(i.e. parent node) is known, then the better choice should have a higher probability

of being chosen. This is not always chosen, however, as sometimes the choice with

a lower win probability can have a higher payout at the end. This balance between

best choice and still choosing apparently sub-optimal solutions is why this search is

semi-random. The choice itself is random but the weight given to each potential

solution is weighted by the currently known value of each choice.

The MCTS combines the tree search and the Monte Carlo algorithm in a way

that is able to use the benefits of both systems. First off, the tree is started from

an initialized root node. This node represents the state of the system before any

decisions are made. From this node, a choice is made on the next step according to

a Monte Carlo based decision method. At the initial state all perceived payouts are

the same so the first decision is completely random. Once a new decision is made,

the remainder of the solution string is generated randomly and then the solution

generated is scored. This score is back propagated to the decision point, and the

payout weight at that point is modified. The search is then reset back to the root

node and the next search is performed with the new weight scales affecting the Monte

Carlo decision. This process is repeated until the entirety of the search tree is searched

or an artificial search interrupt is engaged. When the search ends the path to the

best child node found is given as the optimal solution.
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Genetic Algorithms.

Genetic algorithms work by generating a population of solutions and analyzing

each member of that population with regards to a certain objective function. The top

performing members are selected and combined to create a second population which

is also analyzed against the fitness objective. The top performing members of this

second population replace the worst performing members of the original population

and the process is repeated. Each combination of populations is referred to as a

generation, and genetic algorithm run times are typically limited by population sizes

and generational limits.

Planet Wars and Genetic Algorithms.

Fernandez-Arez et all associate the genetic algorithm against the RTS game Planet

Wars in their research towards the 2010 Google AI Challenge. Planet Wars is a simple

RTS where a player is assigned a number of planets each with their own starting

units. Players must then utilize their fleets to conquer other planets and increase

unit production. The game is largely about expansion by conquering neutral planets

in the first stages of the game, and then evolves into tactics based combat as the

two players battle to take each others territories in the later stages of the game. The

results of the research show that a properly attuned genetic algorithm can be used to

create a high percentage win rate, but a poor choice of objective can actually work

against the AI agent and result in a higher loss rate [36].

Computational Agent Distribution.

Another important factor to consider in the construction of an AI agent is the

method the overall framework is built. Many researchers utilize a single agent design

that aims to have a single algorithm develop a solution to many aspects of the RTS
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game. The AFIT agent is instead built using the modified technique introduced

by Weber et al. [37] for their StarCraft EISBot. This type of agent is actually a

compilation of many different agents - each individual file responsible for their own

area. In his paper Weber discusses that his agent has separate managers for Strategy,

Income, Construction, and Tactics. The AFIT agent built off of this initial design

plan has its own separate managers: Attack, Defense, Unit, Building, and Economy.

Each of these agents are able to prioritize and act on a different set of goals in

order to help offset the restrictions caused by the No Free Lunch (NFL) theorem.

This theorem states that no algorithm is optimal in all situations. The splitting of

an agent into multiple managers allows each manager to be separately customized,

which can provide better, faster searches in a smaller domain space.

Hierarchical Control of RTS AI.

In their 2014 paper, Stanescu et. all introduce a method of controlling combat in

RTS games by generating a hierarchy of agents to control units on the field according

to various objectives. The purpose of this model is to create a situation where some

agents are on the “squad” level which control individual units to accomplish a set

objective. These units fall under the control of other agents which have a “comman-

der” level of authority which seeks to accomplish an overall strategy by assigning

squads particular tasks. This split up of authority and decision making results in

many smaller searches being performed instead of a single solution being sought for

every unit on the field. This approach to RTS decision making is proven to have its

benefits, especially in large combat scenarios where other search methodologies such

as tree searches are overwhelmed by the sheer number of potential outcomes [38].
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Figure 7. Example Pareto Front with Different Population Sizes (5, 10, 20, 50)

2.8 Multi-Objective Evolutionary Algorithm Tactics

The effort described for this research is a novel approach to the tactical decision

making problem area, as it utilizes a variety of MOEA methods to determine the best

targeting solutions faster than humanly possible. While current research primarily

focuses on single objective evolutionary algorithms or applying various learning tech-

niques and foresight, this research aims to create and test a methodology that is

capable of generating a “good enough” solution using data that is currently available.

The process involves testing various MOEAs under different parameter settings and

then choose the option with the best resulting Pareto front as the example to bring to

on line testing. The hypothesis is that a properly programmed MOEA finds an opti-

mal set of tactical targeting decisions that maximizes damage output and minimizes

wasted firepower.

2.9 Multi Objective Evolutionary Algorithms (MOEAs)

Multi Objective Evolutionary Algorithms are methods of solving problems by an-

alyzing the potential results with regard to a variety of objective metrics [7]. While

a single objective search focuses on optimizing a particular equation or metric within

a set bounds, MOEAs are capable of finding multiple solutions that provide a range

of outcomes based on the weighting of the objectives used. This range of data points

which scale the different resulting scenarios resulting from differently weighted ob-
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jectives is known as the Pareto front. The Pareto front consists of a set of optimal

solutions that maximize the evaluation of a series of solutions based on which ob-

jective is assigned most important, least important, and every objective in between.

Each axis of a Pareto front is represented by a separate function. The front serves to

provide the user with a visual method of showing how the weighting of each objective

value affects the overall outcome of the algorithm [39]. An example of the Pareto

front can be seen in Figure 7 [40].

Nondominated Sorting Genetic Algorithm (NSGA).

The first algorithm to be discussed and used in this experiment is the Nondom-

inated Sorting Genetic Algorithm (NSGA). Currently NSGA-II [41] is the most

popular version of this algorithm used in MOEA software. The NSGA algorithm

works by first randomly generating an initial population of potential solutions. Each

of these solutions are then analyzed based on the objective functions set in the prob-

lem. Once all members of the initial population are analyzed they are ranked based

on their level of pareto dominance. The more dominant members of the population

are weighted higher than the non-dominant members of the population. The mem-

bers of the population are then combined, with the more dominant solutions having

a higher probability of being chosen for combination to create new members of the

population. Once these new individuals are generated they are also measured against

the objective values stated in the algorithm. The new members of the population are

then combined with the old, and the best set are maintained for the next generation.

It is important to note that there is a crowding factor - multiple individuals with

very similar objective values are not saved in order to maintain a certain level of

diversity in each generation. This process repeats for each generational instance in

the algorithm until a final champion individual is found [39].
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Strength Pareto Evolutionary Algorithm (SPEA).

The original version of the Strength Pareto Evolutionary Algorithm (SPEA) was

developed in 1999 and aimed to combine many previously popular MOEA techniques

into a single new algorithm [42]. The SPEA algorithm stored non-dominated solutions

externally, used the concept of Pareto dominance to assign a scalar fitness value to

each individual, and performed clustering in order to reduce the number of non-

dominated solutions within the current generational solution set without negatively

impacting the Pareto front. The algorithm works by generating an initial population

P and an empty non-dominated set P ′. It then copies any non-dominated members

of P into P ′. If these new members of P ′ dominate or are dominated by existing

members of P ′, the dominated solutions are removed. If the number of members in

P ′ exceeds the maximum population size, then P ′ is pruned. Once the size of P ′ is

less than or equal to the maximum population size, the fitness for each member of P

and P ′ is calculated, members from both are taken and then used to create the next

generation. These steps are repeated until the maximum number of generations are

calculated.

The unique aspects of the SPEA are the fitness evaluation functions and the

clustering function used to trim an overfull P ′. The first step in this analysis is

to generate the scores for each member i ∈ P ′. Each fitness score, or strength is

evaluated according to the formula si = n
N+1

, where N is the size of P and n is the

number of members in P that the point i ∈ P ′ dominates. Once this is accomplished

for every member in P ′, the algorithm then computes the fitness for each member

j ∈ P . The fitness of j is evaluated by summing the score of each point iinP ′

that dominates j, and then adding one. These evaluations are performed in each

generational computation, with the consideration that a lower fitness value leads to

a higher probability of being chosen for combination to create the next generation.
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The final evaluation that takes place is the clustering function, used to trim down the

non-dominated set P ′. This function works by dividing each member i ∈ P ′ apart

into a set of clusters. If P ′ is overfull, the algorithm determines the overall distance

between each cluster. The nearest two points are then merged together into a single

cluster. This repeats until the number of clusters equals the maximum population

size. Once this is done a single solution from each cluster of size larger than one is

chosen as that clusters representative on the pareto front, and the other members of

that cluster are discarded.

Strength Pareto Evolutionary Algorithm 2 (SPEA2).

The SPEA2 is a continuation of the development used to create the SPEA [43].

The overall process used in each generational computation is largely similar to the

one used in the SPEA. First, an initial population set P0 is created, with a blank

set P ′0. An additional variable t = 0, which represents the current generation, is also

created at this time. Once the set is created then the fitness values of each member

of Pt and P ′t are calculated. All non-dominated members of Pt and P ′t are copied

into P ′t+1. If P ′t+1 exceeds the current population limit, then it is truncated. If the

generational limit has not yet been reached, then the members of P ′t+1 are combined

via binary tournament selection in order to create the next generation. This process

repeats until the generational limit is reached.

The first difference in the calculations performed in Strength Pareto Evolutionary

Algorithm 2 (SPEA2) is the fact that every point in P and P ′ are assigned a strength

value. In the SPEA, the fitness value of a point in P is simply the sum of the

strength values of the members in P ′ that dominated it. This could potentially lead

to numerous points in P having the same value, and a sub-optimal one of these being

selected for future combination. SPEA2 fixes this by assigning every point currently
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in consideration a strength value, and then following the old process of a fitness value

for any given point i being the sum of any points j 6= i that dominate point i. This

creates a hierarchy of dominated points, so that a point that is only dominated by

the points in P ′ has a higher chance of being selected for combination than a point

in P that is dominated by points in both P and P ′. The pruning operator of the

SPEA2 has also been modified. The first new capability of this operator is to always

maintain the furthest points on the pareto front in order to ensure that the front

is always as long as possible. The second modification is to sort through the entire

solution set P ′t+1, find the closest two points, and remove the point of that pair that

does not increase the maximum distance between the pair and adjacent points. These

two operations ensure that the resulting pareto front is more uniformly distributed

across the entirety of the pareto front.

Non-Dominated Sorting Particle Swarm Optimization).

The Nondominated Sorting Particle Swarm Optimization (NSPSO) algorithm is

an application of the Particle Swarm Optimization (PSO) methodology to a multi-

objective landscape [44]. This algorithm combines concepts from PSO and Non-

dominated Sorting Genetic Algorithm II (NSGA-II). First, an initial population is

developed, each member of the population has a randomized starting velocity within

a previously set boundary. Each of the members of this population is then analysed,

and the non-dominated members are copied into a separate list. Once the list of

non-dominated solutions is completed, the algorithm chooses one member from this

non-dominated list as the best, and uses this as the global best option for the rest

of the calculations in this generation. The rest of the operations of the PSO work

as normal, with the other members within the population changing their vector and

velocity to move towards the current personal best and global best members in the
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population. This results in an MOEA that gradually clusters its solutions near the

best solutions, leading to a more intensive localized search while sacrificing the ability

to search the entirety of the available landscape.

Other Multi Objective Evolutionary Algorithm Options.

There are numerous other methods of solving multi-objective problems, as any

algorithm can be modified to more closely fit a specific problem at hand. This mod-

ification limits the use of this now customized algorithm for the purpose of solving

other problems so there is a trade-off between having a generic algorithm that can be

used on many problems or creating a custom problem suitable for a single problem

[45, 46].

Pareto Front Indicators.

The multiple ways of deriving a Pareto front leads to the problem of the compar-

ison of the results of one MOEA to the results of a separate option. For each specific

problem, there is an MOEA that works the best, and one that does not work as well.

This is known as the “No Free Lunch” theorem, which in essence explains that there

are always optimal and sub-optimal algorithms available to solve any given problem.

There is no such thing as a universally optimal search algorithm [47]. The goal of any

Pareto front indicator is to judge the Pareto result from a given MOEA and provide

a means to compare that result to the result from a different MOEA.

Hyperarea / Hypervolume.

The hypervolume (HV) or Hyperarea (HA) method aims to maximize the area or

volume covered by a particular Pareto front. This indicator determines the volume of
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an objective space that is dominated by any given set A with regard to a designated

origin point [48].

R - metrics.

R-metrics operate by using an external utility function to compare the results

of any Pareto front. Each point within the Pareto fronts being compared is put

through these utility functions and then the results can be used to provide a means

to determine which option is better. The results of an R-metric analysis between

Pareto fronts is heavily reliant on the metric used for the comparison, and the user

should also be aware that a single large outlier can offset numerous smaller differences

[48].

Generational Distance.

The Generational Distance (GD) method compares the results of a given MOEA

to the known best Pareto front available. Each member of the MOEA’s resulting

Pareto front is paired with the known best, and the total difference between the two

options is calculated. This results in a clear metric that can be used to determine

how close any given Pareto front is to optimal. The limitation of this indicator is that

the user must first know what the optimal Pareto front is for a given problem [48].

ε - indicator.

The epsilon indicator operates by attempting to minimize the value ε that causes a

set B that is dominated by another set A to instead weakly dominate A. This can be

visualized as determining the amount of error that, if added to a substandard option

B improves B to perform at least as well as the alternative A. This metric requires

two different sets to compare, and can show improved results if the true Pareto front
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is known, as it then becomes a metric directly comparing distance away from the true

Pareto front [48].

MOEA Software.

The purpose of the MOEA software selection is to serve as a external framework

that the AFIT agent can access and use to determine an optimal course of action for

the controlled units to take. These frameworks can be accessed in different ways and

can come in a variety of coding languages.

jMetal.

One of the most popular MOEA frameworks available is jMetal (Metaheuristic Al-

gorithms in Java) [49]. As expected from the name, this framework is coded entirely

in Java and is capable of handling NSGA-II, SPEA2, PSO, and a variety of other

algorithms. It also supports numerous quality indicators such as hypervolume, gen-

erational distance, and inverted generational distance. This software provides a very

robust system with the means to analyze a variety of potential setups with regards

to MOEA performance and evaluation.

MOEA Framework.

MOEA Framework is another java library custom built to support MOEA problem

solving. This library supports numerous types of MOEAs, including the recently de-

veloped NSGA-III algorithm. It also supports numerous metrics to gauge the results

and performance of various MOEAs on a specific problem, and includes a pre-built

graphical user interface for easy translation of the results [50].
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PyGMO.

Another MOEA evaluation framework is the python language based PyGMO

(Python Parallel Global Multi-objective Optimizer) [51]. Developed by the Eu-

ropean Space Agency (ESA), PyGMO is a powerful tool that takes advantage of

python’s malleability as a coding language. PyGMO integrates with some other pop-

ular python based scientific evaluation software, such as SciPy, NLOPT, and SNOPT.

While PyGMO provides an easy to understand structure to determine best results

and scoring, it does not have as much breadth as jMetal. Many of PyGMO’s built

in algorithms are focused on single objective evolutionary searches, and it currently

only provides hypervolume as a means to analyze the results of a given search.

ParadisEO.

ParadisEO is a C++ based framework for MOEA analysis that supports many

basic MOEAs such as MOGA, NSGA-II, and SPEA2. It also contains the capability

of using a variety of built in metrics and quality indicators such as hypervolume and

additive and multiplicative epsilon [52, 53].

Borg.

The Borg MOEA is a specifically coded program that utilizes a single custom built

algorithm. This algorithm seeks to measure the tradeoffs between different objectives

and modifies itself to run optimally for the problem at hand. The Borg MOEA is

coded in ANSI C. This MOEA is focused on attuning itself and modifying its own

parameters in order to achieve optimal analysis of a new problem. [54].
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Others.

The list provided in Chapter 2.9 is only a portion of the software available that

has been built to address the analysis of MOEA problems. A much more intensive

list is maintained by Dr. Coello Coello which holds many libraries and frameworks

built for the analysis of a particular MOEA or problem of interest [55, 56].

2.10 Chapter Summary

This chapter provides a synopsis of many concepts and approaches used to plan

and accomplish the experimentation performed for this research. An overview of

the decision making process is provided, as well as a link to the analysis and use of

this process for its application to the RTS decision making problem. A variety of

considered RTS software platforms and MOEA libraries and environments are listed

in order to provide an overall view of currently available technology applicable to

this research. Finally, a comparison between strategic and tactical decision making

is shown, as well as a variety of different approaches to the tactical decision making

problem that have already been tested. The following chapters provide an explanation

and process of the newly generated MOEA based tactical decision making RTS AI

agent that is used to create targeting solutions in online play on an RTS environment.

43



III. Methodology of RTS Tactical Design

3.1 Introduction

As stated in Chapter I, the goal of this thesis research is to develop a decision

making element of an RTS game agent that utilizes MOEAs to make fast, optimized

tactical battlefield decisions. The research is segmented to accomplish three primary

objectives. First, the research combines external MOEA software with the previously

existing AFIT RTS AI agent [6, 5]. Once this integration is complete an offline sim-

ulation of combat is developed and used to test the performance of different MOEAs

to find which type of MOEA performs best with the RTS tactical decision making

problem, and which parameters maximize this performance. The best performing

MOEA/parameter set out of the tested options are coded into the AFIT agent and

tested against various scripted tactical decision making methods which serve as a

comparative basis to test the performance of the MOEA.

This chapter is decomposed in order to adequately describe the methodology of

each of the three primary phases. First, a brief high level description of the entire

experimentation process is provided, along with an analysis of the new software used

to perform MOEA analysis within the AFIT agent. The chapter then goes into detail

describing the purpose and process for each of the primary phases, development of

the problem, offline experimentation, and online experimentation, and details the

selection of the required metrics and analysis tools used to gather data. The chapter

concludes with a summary of all actions performed, and leads into Chapter 4. Chapter

4 expands on the information provided in Chapter 3 and provides a more detailed

explanation into the actual steps used to perform the research.
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3.2 Overview of Research Approach

The purpose of this research is designed to test the capacity of MOEAs for use in

solving the RTS tactical decision making problem. To accomplish this task, MOEAs

with differing parameter settings are used to solve an offline simulation of a round

of combat in order to determine which search method performs the best in the tac-

tical decision making search landscape. This research and experimentation requires

analysis of multiple types of MOEAs, integration of MOEA software with the exist-

ing AFIT agent and Spring RTS Engine, and final evaluation of MOEA controlled

tactical decision making against scripted opponents.

The development in this thesis investigation has three distinct phases. In the

design phase, the objective is to combine the currently existing AFIT agent with

the PyGMO python library [6, 51]. This requires the development of a new MOEA

structure which represents a round of combat in the Balanced Annihilation mod [57]

of the Spring RTS Engine. Once completed, this customized structure is used exten-

sively in experimentation phase two, and is maintained in the online decision making

of experimentation phase 3. Experimentation phase two consists of testing of vari-

ous MOEAs and measuring their performance in solving the RTS Tactics problem.

Multiple MOEAs are used in this phase, which are chosen based on their differing

search techniques. Each MOEA is tested under a variety of population and genera-

tion limit parameters in order to gauge parameters’ effects on the performance of the

MOEA. The resulting performance of each MOEA in solving the RTS tactical deci-

sion making problem is decided based on an analysis of the generated Pareto front.

The most optimal MOEA should have a quickly expanding Pareto front, which should

depict a series of high-performing solutions being generated quickly [58]. Speed is a

critical factor in the RTS tactical decision making problem, as solutions quickly be-

come outdated due to a constantly changing battleground. Thus, the best performing
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MOEA/parameter set is coded into the AFIT RTS AI agent and used as a test case

against a variety of scripted tactics. The performance of the MOEA based tactical

agent is tested against a new set of objectives, and the results are used to determine

the effectiveness of MOEAs as tactical decision making managers.

3.3 MOEA Software Selection

The PyGMO library is selected as the MOEA software for use in this research [51].

The PyGMO software allows for four dimensional Pareto front analysis while also

allowing use of the NSGA-II, SPEA2, and NSPSO algorithms [51]. PyGMO was also

coded in the python, which is the same language used to write the AFIT RTS AI agent

[6, 5]. Choosing a MOEA library with the same native language as the existing agent

allows for easier integration with existing code. Libraries utilizing other languages

would require additional development time which would have a questionable impact

on the overall performance of the MOEA based tactical decision making manager.

The purpose of this research is to prove the usability of MOEAs in the RTS tactical

decision making problem - complete optimization of this agent is not within the scope

of this research.

3.4 Design Phase 1 - Integrating Spring RTS & PyGMO

Phase 1 of the research includes the redesign of the existing AFIT tactical decision

making manager to allow for the integration of MOEA based tactical decision making

within the Spring RTS Engine. This phase begins with the analysis of the methods

the AFIT agent utilizes to initialize and perform combat maneuvers, and modification

of the agent to act on champion solutions resulting from MOEAs. A custom problem

representing the RTS tactical decision making problem is also developed and used to

test the performance of different MOEAs in Phase 2.
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Figure 8. File layout for the Di Trapani (AFIT) Agent [6]
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It is important to note that the integration of PyGMO into the AFIT agent is

complicated by the nature of the AFIT agent. The AFIT agent is developed by

a variety of students, each with their own coding styles. The integration of open-

source software into the AFIT agent requires a very methodical approach in order to

minimize potential code conflicts or errors.

AFIT Agent.

The agent modified for use in this experiment is the one developed by Di Trapani

in his 2012 thesis research [6]. His agent is actually a framework of multiple managers

that constantly communicate with each other throughout the duration of the RTS

game. This inter-dependency allows each individual manager to enact a different de-

cision making process that has been optimized for a specific role. The setup of the

original AFIT agent is focused on generation and utilization of series of strategic op-

tions chosen through various configuration files. The tactical control exists within the

group.py file in the current AFIT agent, but follows very simple scripted commands

and is able to make decisions based on a complete knowledge of the current state of

the battlefield. A list of the original file structure can be seen in Figure 8 and the

inter-connectivity is shown in Figure 9.

As shown in Figures 8 and 9, agent initialization begins with Agent. This file

calls on the UnitClass file in order to define all units to be used with a given game

type. Once initialized, Agent creates and links AttackManager, DefenseManager,

BuildManager, and idleEventFilter. These four files control the majority of systems

during gameplay. BuildManager utilizes EconManager and the Strategy in order

to generate a series of initial actions for the agent to follow. BuildManager is the

primary control system until units are generated. Once units are generated they are

added to Group, within DefenseManager. These units are used to defend the base
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until they reach the appropriate army size defined within a set strategy. Once the

army is “complete”, the Group is passed to AttackManager, who presses an attack

on the opponent. This process continues until one side participating in the battle is

destroyed.

The AFIT agent initializes two files, agent.c and agent.py. These two files serve

as the starting points for future calculations - agent.c acts as the first step in the ini-

tialization of the AFIT agent, and establishes the connection to agent.py. Agent.py

then reads the configuration settings laid out for the system under test and estab-

lishes the primary managers - BuildManager, DefenseManager, and AttackManager.

The initializations cascade through the various other python files as shown in Figure

9. This co-dependence not only allows for each agent to independently control it’s

portion of the game, but also allows for the introduction of new managers - a critical

trait for the introduction of MOEA analysis to tactical decision making.

AFIT Agent Configuration Settings.

There are two files that drive the initial configuration of decision making methods

of the AFIT agent. These files are config.txt and strategyDefs.txt. Config.txt is used

in the initialization of the AFIT agent through the cdata.py code, an example of

which can be seen in Figure 10. The config.txt file has three sections: The game

run number, which game map will be used as the battleground, and the individual

player settings. The game run number is the least important of these options as it

serves only as a marker for naming the results of automated testing of the agent. The

map designation specifies which Spring RTS map should be loaded for a particular

experimental run. These maps must be created in order to match the requirements of

the Balanced Annihilation mod, which include things such as player start locations

and resource patches [57]. The final section in strategyDefs.txt is a number of rows
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Figure 9. File connection structure for the Di Trapani (AFIT) Agent [6]
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# Game run number - Used for automated game play

3

# Name of map to be used

ThePass

# Player 1 - Strategy - data collection - Tactics

p1 25v25 on default

# Player 2 - Strategy - data collection - Tactics

p2 25v25 on moea

Figure 10. Example for config.txt

Table 1. Layout of a Strategy in strategyDefs.txt

Variable Name Domain Description

Build Power Integer value [0,100] Percentage of resources for manufacturing capability

Economy Integer value [0,100] Percentage of resources for economic development

Defense Integer value [0,100] Percentage of resources for defensive structures

Units Integer value [0,100] Percentage of resources for units

Group Composition Non-negative integer for each unit type to be considered Size and composition of an ”attack group”

Initial Economy 2-tuple of integer values Initial economy required

equal to the number of players on the map. Each of these rows is further split into

three sections - a player designator, a strategic method of choice, and a binary data

collection variable. The player designator is something as simple as labeling the first

player “p1” and second player “p2”. The second option sets the strategic methodology

for the agent to choose which is further defined by strategyDefs.txt. The final binary

variable is a setting to determine whether or not a players actions should be saved

in an external file. If true the game saves the current state of a game in an external

replay file every five seconds.

Modification of the AFIT agent includes creating a new manager, MOEA, which

will be called on by Group in order to provide a series of commands during battle.

This new manager will rely on information provided by
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The strategyDefs.txt file controls the flags that the agent uses to make building

and attack decisions. A description of each of the separate sections of the document

can be found in Table 1. In Di Trapani’s version of the AFIT agent, this file holds

numerous lines of strategies such as tank rush and anti-air [6]. Each line in a strategy

tells the agent how to allocate resources, how to construct an attack group, and how

to initialize an economy at the start of a game. The initial economy factor is the

first segment of the code that the agent carries out, as it establishes a foundation of

economic development that provides the resources for future play. The group compo-

sition is the portion of the agent that begins an attack. When units are created they

are placed in a group under control of defenseManager. When a group is “complete”,

or deemed equivalent to the string in the group composition value, it is handed from

defenseManager to attackManager and set to attack. At this point a new group is

created and any newly generated units are again assigned to defenseManager.

Both of the configuration files are modified in order to support the implementation

of tactical decision making. Config.txt is changed to manage a choice between vari-

ous tactical decision making methods as well as strategic options, and new strategic

definitions are added to strategyDefs.txt in order to support simulated experimenta-

tion. The specific changes and addition of new tactics to config.txt are described in

Appendix A

PyGMO.

PyGMO is a python based library which provides the capability to analyze various

problems via included optimization processes [51]. Each use of PyGMO requires the

initialization of a problem, selection of an algorithm, and evolution by populating an

“island”. A example is provided via of one of the tutorials on the PyGMO website and

is shown in Figure 11a [59]. This example shows how PyGMO solves a 50-dimensional
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from PyGMO import *

# Initialize Problem

prob = problem.schwefel(dim=50)

# Select Algorithm to Solve

↪→ Problem

algo = algorithm.de(gen = 500)

# Generate Island for Initial

↪→ Population

isl = island(algo,prob,20)

print isl.population.champion.f

# Evolve the Population 10 Times

isl.evolve(10)

print isl.population.champion.f

(a) Code for PyGMO Example

(17643.0955597,)

(0.00063643016983401569,)

(b) Output for PyGMO Example

Schwefel minimization problem. As seen from the code any PyGMO initialization has

three main components: the problem to be solved, the algorithm used to solve the

problem, and the “island” that the population of potential solutions resides on.

In Figure 11a, the first line is responsible for implementing the PyGMO library.

The next line which initializes prob sets this variable as a integrated problem that has

been built into the PyGMO software, with the variable dim=50 setting the number

of dimensions to be implemented in the calculation. The analysis of a RTS game

environment requires a customized problem to capture the current battlefield situa-

tion. The next line sets the variable algo to the differential evolution algorithm with

500 generations. This is made possible by the algorithm.de set-up, where the de

stands for differential evolution. The last step is to build the population’s island.

The command island(algo,prob,20) creates an initial population of 20 members
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that is then modified by the algorithm and problem via evolution. The best member

of the population can be found at any time via the isl.population.champion.f

command. The results of the two print commands included in Figure 11a can be

seen in Figure 11b. The first line in Figure 11b is the best member of the initialized

population of 20 members. The second line in Figure 11b shows the results after the

population has been evolved 10 times. Based on the definitions instantiated by the

variable algo, 10 evolutions of the island is actually 10 ∗ (gen = 500) generations, or

5, 000 generations. That is why the algorithm is able to find such a small end result

in only ten evolutions.

Custom Tactics Optimization Problem.

The utilization of MOEAs to solve the RTS Tactics Optimization Problem requires

the development of custom problem for use in the PyGMO RTS Engine. The problem

developed is loosely based on the build order optimization problem developed by

Blackford in the previous AFIT agent [5]. For the custom RTS tactical optimization

problem, each solution consists of a string with length equal to the number of agent-

controlled units in the army. Each position of this string holds a value between 0 and

the number of enemies in the battle. The position - value pair represents the target

for the agent controlled unit. An example can be seen in Figure 12, and the code for

this custom RTS tactics problem solution can be found in Appendix A.

Instantly Spawning Units in Spring.

Typically, unit creation in Balanced Annihilation requires the construction of ap-

propriate factories or barracks. This can require up to 15 minutes for an agent to

build up an appropriate number of units to test tactical decision making methods [6].

In order to speed this process, the online testing of phase 3 relies on “cheat” com-
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Figure 12. Example Solution for 3 vs 2 Combat

mands built into the Spring RTS Engine. These cheat commands allow instantaneous

construction of units so that quick battles can be performed. The utilization of cheat

codes drops a single simulation time from 15 minutes to under 2 minutes. This pro-

cess of instantly generating units is critical for increasing the speed of online testing of

the RTS tactical decision making problem. Base development is unnecessary for tac-

tics testing and differing base development decisions between the two tested agents.

This may cause armies to be launched at different times, which negatively effects the

analysis of tactics performance by affecting battle location or army completion rate.

3.5 Design Phase 2 - Developing Off-line Simulations

Once the custom solution to the RTS tactical decision making problem is devel-

oped, it is used to analyze the performance of various MOEAs in an off-line envi-

ronment. An off-line environment is employed because a typical game of Balanced

Annihilation (BA) takes approximately two minutes, even when hastened by the in-

stant generation of units described in Section 3.4. Performing online testing of each

MOEA under each parameter setting is time prohibitive, so an offline simulation is

created which represents the first round of combat. This truncation is performed un-
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der the logic that if a MOEA/parameter set is capable of creating fast, well performing

solutions in the first, most complicated, round of combat, then that set also chooses

fast, well performing solutions in less difficult situations. Now that the framework

has been developed, the next step is to actually choose the MOEAs and parameters

to utilize for tactical decision testing.

MOEAs Under Test.

The MOEAs chosen to be evaluated within this research are NSGA-II, SPEA2,

and NSPSO. These algorithms are chosen because they represent generic coverage

search methodologies in MOEAs. NSGA-II represents algorithms that utilize semi-

random combination of seemingly optimal population members. SPEA2 focuses in-

stead on the maintaining the spread between members in a particular generation on

the Pareto front. NSPSO gathers its population members towards expected good

decisions, which results in a more in-depth search in a small area of the Pareto front.

These three methods present a combination of random, spread search, and focused

search methods. This provides a baseline approach towards the analysis of differ-

ent search techniques on the RTS tactical decision making problem. Each of these

MOEAs are also readily available for implementation in the PyGMO code, which

speeds development time and integration with the Spring RTS Engine [51]. The pa-

rameters changed for experimentation are the population and number of generations

to evaluate. Population size options are 20, 40, 60, 80, and 100. Generational numbers

are 2, 3, 4, and 5. These options are chosen because they provide a ”good” coverage

of the utility of each MOEA while also providing a range of potential solutions that

are calculated within a couple of seconds.
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Off-Line MOEA Objectives.

Perhaps the most important decision in setting up an on-line MOEA is the choice

and application of the objectives measured. For this research, a four objective MOEA

design is chosen due to the desired amount of data required compare each member

of the population. Each of the objectives considered for use are discussed in the

following sections, as well as their application and refinement in order to make them

more applicable for the tactical decision making problem.

OBJ =
M∑
i=1

statusi −
N∑
j=1

statusj (1)

OBJECTIVE: Difference in Number of Units.

The first objective focuses on comparing a total count of units controlled by both

sides in a conflict and is shown in equation 1. Fog of war [60] is removed for the

analysis of the number of units taking part in battle, which means that the complete

number of units available to both sides is visible to the MOEA. In this equation, M

represents the total number of enemy units on the field, and N represents the number

of allies. The status variable is a binary value which is true if the unit is available

for use. This objective is initialized to zero and is minimized through the course

of generational optimization. The concept behind this objective is that if an army

has more units than the opponent, then it has a measurable advantage in how those

units can be used. The resulting values of this objective are small in comparison

to other objectives due to the limiting factor of the number of units on the field.

The maximum number of units potentially lost in a round of combat is equal to the

total number of units, which is already much smaller than the hit point or damage

capability scores used for other objective analysis.
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OBJ =
M∑
i=1

HPi −
N∑
j=1

HPj (2)

OBJECTIVE: Difference in Remaining Hit Points.

The second objective considered compared the relative number of Hit Points (HP)

available to each side of the conflict. Like in objective 1, M is the number of enemy

units and N is the number of allied units. In this objective a pure sum of hit points

is taken and the difference between them is measured. The purpose behind this

objective is to attempt to measure the future survivability of an army in comparison

to enemy forces. If an army has more hit points then it has a higher probability of

surviving the next wave of attacks, which means that it is be able to continue firing

for a longer period of time and provide more damage to the enemy. This objective

is modified by having each unit’s HP represented as a ratio rather than a definitive

HP total, as some unit’s hit points can range into the thousands which skews the

objective analysis towards these four or five digit values and away from the smaller

objective values. This is represented in equation 2.

OBJ =

∑M
i=1 HPi∑M

i=1 statusi
−

∑N
j=1 HPj∑N

j=1 statusj
(3)

OBJECTIVE: Difference in Average HP per Unit.

The objective shown in equation 3 is a combination of the unit number and HP

difference objectives. First the total amount of hit points available to each army is

calculated, and then divided among the remaining units in that army. The purpose

of this objective is to create a glimpse into the survivability of each individual unit

on either side. This agent gives more weight to those armies with a higher average
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HP value. This increases the optimality score of high HP armies, which have a higher

survivability rate in future battles.

OBJ =
M∑
i=1

damagei −
N∑
j=1

damagej (4)

OBJECTIVE: Difference in Remaining Damage Capacity.

The objective in equation 4 is a strict measure of the damage dealing capability

of the units remaining on the map. This objective is initialized to zero like other

difference based objectives. This measure subtracts all potential weapon damage that

allies units can perform, and adds damage capability of opposing units. The purpose

of this objective is to have allies units focus on destroying hard hitting enemies first,

thus reducing the strain allied units need to worry about in future stages of the battle.

This also allows allied units to focus on preserving their own heavy damage fighters

if mobility commands are implemented in the tactical agent.

for each enemy I in combat:

count = 1

for each ally J attacking enemy I:

Subtract count from objective score

count = count + 1

Figure 13. Code Representing Focus Fire Objective

OBJECTIVE: Focus Fire.

The objective shown in the pseudocode of Figure 13 is originally initialized to 0,

and decreases with regard to how many friendly units attack the same enemy target.

This objective checks each potential enemy in the list and subtracts an increasing

amount for each friendly unit attacking that target. The first unit is worth -1, second
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is worth -2, third -3, and so on. Five friendly units attacking the same enemy would

subtract 5 + 4 + 3 + 2 + 1 = 15 from the objective. This objective is introduced in

order to increase the probability that friendly units focus on the same target. Prior

to the introduction of this objective, the MOEA is capable of maximizing damage by

spreading attacks randomly across all potential targets, and it is rare to get an early

kill due to damage across 5 enemies being equivalent to having 5 units fire on the

same enemy. With this objective allied units are able to severely damage, if not kill,

more units in each round of combat. This lowers potential enemy damage output and

also increases the likelihood of kills in future rounds.

OBJECTIVE: Damage / HP.

This objective is a modified form of the version discussed in Kovarsky and Buro’s

work [61]. In the original paper, the objective is

LTD(s) =
∑
u∈Ue

HP (u)ḋpf(u)−
∑

u ∈ UaHP (u)ḋpf(u) (5)

where

dpf(u) =
damage(w(u))

cooldown(w(u))
(6)

This objective is modified to a more generic form in order to take into account a

base damage per hp for each unit by changing equation 5 as shown in equation 7

LTD(s) =
∑
u∈Ue

HP (u)ḋamage(u)−
∑

u ∈ UaHP (u)ḋamage(u) (7)

This can be modified in order to achieve the end results from Kovarsky and Buro’s

paper, but it works sufficiently well in its current form in order to be able to distinguish

the importance of targeting low hp high damage units prior to high hp or low damage

dealing units. The focus of these equations is to have the agent focus more fire on
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dangerous enemies with low hit points. If targets with high attack and low defense

are removed first, this not only removes enemy damage dealing capability but also

increases the speed and quality of future searches due to the reduced search area.

Objective Selected for Use in Offline Simulation.

The objectives selected for use in the offline simulation are the number of units,

the HP total, the damage capability, and focus fire. These objectives are selected due

to the uniformity of armies fighting each other - engagements for test are comprised

of only one type of unit. With this type of army composition the combination of HP

total, damage, and number of remaining units is expected to provide a precise view

of the overall health of the two armies after an attack. The focus fire objective is

added in order to enable friendly forces to heavily damage a few units rather than

distributing fire on many targets. This focus of damage either destroys enemy targets

within the first round or enables the search to have better, easier solutions in later

rounds of combat due to the existence of heavily damaged enemies.

While the focus fire objective skews the search area due to the fact that it is

capable of obtaining much larger values than the other averaged objectives, this offset

is mitigated by the inclusion of a variety of constraints within the custom RTS tactical

decision making problem. First, any damage dealt that brings an enemy past 0 hit

points is ignored, effectively negating the primary effects of that shot. Second any

expected damage to an enemy out of firing range is set to 0, which also negates any

seen benefit of focusing on enemies too far away. These two constraints work to

maximize focused fire while also preventing this objective from creating sub-optimal

solutions.
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Measuring MOEA Performance.

The performance of each MOEA, population, and generational limit combination

is based on the improvement to the expansion rate of the Pareto front’s hypervolume

[39] over the course of time. This decision is made because the solution to the RTS

tactical decision making problem must focus on both speed and correctness. A larger

hypervolume provides a better “champion” solution, as the resulting Pareto front is

closer to the “true” Pareto front. The speed of solution is important because the state

of a RTS battle is constantly changing so a solution must be provided fast enough

to still be relevant. The objective of this metric is to determine which combination

of attributes leads to the fastest, best solution. In order to accomplish this task,

each MOEA is tested with a population of 20 and a single generation in order to

serve as a starting point. The hypervolume of these runs is used as the comparative

basis against the other MOEA / population / generation tests. For example, if the

NSGA-II algorithm is tested to find a hypervolume of x, then each subsequent test

uses the formula HV−x
t

to determine the score of that combination, where HV is the

new hypervolume and t is the time required to complete the test.

3.6 Experimental Phase 3 - Developing On-Line Simulations

The objective of phase 3 is to take the best performing MOEA from phase 2 and

utilize it in a series of on-line runs to validate its performance against three commonly

scripted options. The MOEA selected for on-line integration is shown to out perform

the alternatives due to the results analyzed in phase 2.

RTS Tactic Methods.

There are three scripted tactical target decision making methods used to serve

as challengers to the best performing MOEA found in phase 2. These three scripts
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are group attack closest, individual attack closest, and group attack weakest. These

options are chosen as options because of their use as a starting point of measuring

tactical performance in other researcher’s work related to tactical decision making

[13, 34]. Group attack closest is capable of balancing the number of units firing

during a round of combat while also maximizing the extent of focused fire. Individual

attack closest instead maximizes the number of units able to fire at the cost of focused

fire. Group attack weakest destroys damaged units quickly and removed their damage

dealing capacity from the battle as soon as possible.

Group Attack Closest.

The pseudocode shown in Figure 14 depicts the “standard” AI decision making

process for the AFIT agent. The entire code can be found in Appendix A The first task

the agent performs is to generate a blank matrix based map which holds the data for

all friendly and enemy units. This map is populated in the second for loop displayed

in the figure. The agent goes through a pre-generated list of enemy positions built

by the cdata.clb.getPositions command. These positions are assigned a point in

the matrix generated at the start of the code. Once all enemy positions have been

added to the targeting map, the central point of all allies forces contained in the

current group is found by the self. getCenterOfMass() command. This command

performs a similar task as the previously mentioned for loop, but instead takes all of

the X and Z coordinates for every unit in the currently controlled group and averages

them. The X and Z coordinates are chosen because the Spring RTS Engine treats

the Y axis as the vertical axis to denote altitude. Ground forces ignore altitude in

this version of the agent since range is a hard set parameter flying units likewise do

not need this axis as they operate at a constant altitude [6].

63



for each cell in map:

clear cell data

enemyMap = list of enemy units

size = length of enemyMap

unitIds = identification of each unit in enemyMap

enemyPositions = position for each unit in enemyMap

for each unit in enemyMap:

place enemy and corresponding data on correct position in map

xavg, zavg = center of mass of agent controlled units

if agent forces are flying:

attack enemy commander

else:

if enemy commander in line of sight:

attack enemy commander

else if building in line of sight:

attack building

else:

attack enemy in Line of Sight closest to (xavg, zavg)

if no enemies within line of sight

move towards enemy commander

Figure 14. Pseudocode for Default AFIT Agent Tactics (Group Attack Closest)

Once the average allied position and map of enemy locations have been built, the

agent begins sorting target priorities. The first task is to search for nearby enemy

buildings. If a building is closer than enemies then the building is set as the group’s

target marked by the enemy variable. If no buildings are within range the agent

then checks the size of the enemies list. If an enemy exists in this list the agent

determines the enemy unit closest to the coordinates (xavg, zavg) and set that as
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the group’s target. The last step before firing is to determine if the chosen target

is actually within firing range. If the enemy is within range, the group attacks that

target. If no enemies are within visual range then the agent defaults towards telling

the group to move towards the enemy commander until enemies are encountered. This

repeats until the enemy commander is destroyed or the controlled group is completely

destroyed.

If a group is comprised of only air units, various if statements check for an “air”

designation. If this “air” setting is true, the agent ignores all tactics other than a

direct attack on the enemy commander [6].

Individual Attack Closest.

The algorithm for the Individual Attack Closest tactic is shown in Figure 15, with

the full code provided in Appendix A. This algorithm is a modification of the default

attack code shown in Figure 14, and takes place within the if statement checking if

the targeted closest enemy is within line of sight. This code differs in the manner in

which it engages the opposing force. Where the default code has every unit in the

group engage a single enemy, the individual attack closest tactic performs a sorted

search through all enemy locations. This search is performed by first determining

each allied unit’s location. This location is then saved, and a blank target list is

built. This target list is populated by comparing the allied unit’s location to every

enemy location on the map, with the result being stored as [distance, enemyId].

Once the list is completely populated a sort command is used to sort the target list

based on the first value, which is the distance. This sort puts the smallest distance

first, and then the agent assigns the unit to attack the enemyId associated with that

distance.
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for each cell in map:

clear cell data

enemyMap = list of enemy units

size = length of enemyMap

unitIds = identification of each unit in enemyMap

enemyPositions = position for each unit in enemyMap

for each unit in enemyMap:

place enemy and corresponding data on correct position in map

xavg, zavg = center of mass of agent controlled units

if agent forces are flying:

attack enemy commander

else:

if enemy commander in line of sight:

attack enemy commander

else if building in line of sight:

attack building

else:

for each friendly unit

attack closest enemy

if no enemies within line of sight:

move towards enemy commander

Figure 15. Pseudocode for Individual Attack Closest

Group Attack Weakest.

The pseudocode for the algorithm controlling the group attack weakest tactic is

shown in Figure 16 and is very similar to the code used in the individual attack weakest

tactic (Figure 15). As with the other scripted tactics method, the full code can be

found in Appendix A. The selection of a target follows the same basic procedure,
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for each cell in map:

clear cell data

enemyMap = list of enemy units

size = length of enemyMap

unitIds = identification of each unit in enemyMap

enemyPositions = position for each unit in enemyMap

weakest = 1

for each unit in enemyMap:

place enemy and corresponding data on correct position in map

if unit hit points < weakest hit points

weakest = unit

xavg, zavg = center of mass of agent controlled units

if agent forces are flying:

attack enemy commander

else:

if enemy commander in line of sight:

attack enemy commander

else if building in line of sight:

attack building

else:

for each friendly unit

attack weakest

if no enemies within line of sight:

move towards enemy commander

Figure 16. Pseudocode for Group Attack Weakest

assigning sort weighting on the enemy’s remaining HP instead of the distance between
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a unit and potential targets. Once the sorting algorithm is complete, the unit is

assigned the target with the lowest sorted HP.

allies = []

enemies = []

for unit in friendly units:

append [ID, hit points, "alive", position, damage, range] to allies

for unit in enemy units:

append [ID, hit points, "alive", position, damage] to enemies

initialize RTS tactical decision making problem and initialize population

↪→ size

select algorithm for use with RTS tactical decision making problem and set

↪→ generation

initialize population

evolve population

select "champion"

for position in champion:

position (friendly unit) attacks value of position (target)

Figure 17. Implementation of MOEA in AFIT Agent

Multi Objective Evolutionary Algorithm.

The pseudocode for the MOEA based tactical manager is shown in Figure 17, with

the full code for this algorithm available in Appendix A. The algorithm controlling the

agent based on MOEA output is noticeably more complex than with the tactics based

on sorting. This method is based on building different arrays detailing information

for allies and enemy forces. The first task is to construct the allied array. This array

is built by first using Spring commands to determine the health and position for each

individual unit. This information is then used to build a line of the self.allies
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Figure 18. Stumpy Tank

array, which includes the unitId, health points, alive/dead binary indicator, position,

damage potential, and attack range of each unit. Constant values are set for damage

and range in this research due to the fact that comparative battles are only using

a single type of unit, the Stumpy tank [62]. The stumpy tank’s model within the

Spring RTS Engine can be seen in Figure 18. Once the allied units’ array is built the

enemy array is built using a similar method.

The arrays are then passed to the custom problem built for the RTS tactical

decision making problem discussed in Section 3.4. Once the problem is set, the

algorithm, generational limit, and population limit of choice are applied in the moea,

gen, and pop fields, respectively. The population is then evolved, and the champion

string found. It should be noted that while in the example shown in Figure 11b

gives values due to the champion.f command, the champion.x command returns the

actual string that results in the best value. This string has i entries, where len(i)

is equivalent to the number of allied units on the field. The number at each position

j ∈ i is the target of i. These values can be used to have the attack command

associate each unit i with its target champion.x[i].

Measuring Battle Outcomes.

The on-line battles performed between various tactical methods can be used to

determine the effectiveness of those tactics. The strategy for each agent participating

in the battle is set to one which focuses on the development and construction of 25
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Figure 19. Central Path of ThePass map on Spring RTS Engine

tanks, which are then sent to attack the other army. The map chosen for this is

ThePass (see Figure 19), which is a small multiplayer map on the Spring RTS Engine

which focuses on driving opposing forces through a central channel. This channel

can be used to force opposing armies to encounter and then begin attacking each

other, which is ideal for use in testing how different tactical decision making methods

perform against each other.

OBJECTIVE: Win Rate.

The first, and most important, metric that determines how well various tactics

perform against each other is a simple determination of which agent won the battle.

Winning is defined as the team who has forces remaining on the field when the other

side is destroyed. This metric can be used as an obvious measure to determine how

well an agent performs, but other metrics define the scale of the win based on other

factors such as time of battle and army health after combat.
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OBJECTIVE: Time of Battle.

The next metric that is used to compare the differences between battles is the

overall length of time the conflict takes to resolve. The purpose behind this metric

is to determine how long an army is delayed by opposing forces. In RTS games, it

can be important to end a battle as quickly as possible in order to free up resources

to either return to base to defend against another attack or to continuously provide

pressure on the opposing player. This metric is measured in seconds, as that is the

smallest unit of time the Spring RTS Engine replay files can measure.

OBJECTIVE: Number of Remaining Forces.

Another important metric to consider is the number of remaining forces. In RTS

games, a unit with a single hit point can still serve either as a distraction to enemy

units or another platform to damage enemies. For this reason the number of remaining

units is used to determine how well various tactics perform against each other.

OBJECTIVE: Health of Remaining Forces.

The final metric that determines the grade of how well tactics perform against

each other is the sum of remaining hit points among the forces. This metric is aimed

at determining how well an agent has used its forces, and as a measure to determine

how useful surviving units are in future attacks. An agent that wins with a number

of severely damaged units is not expected to perform well in future engagements with

those units.

3.7 Chapter Summary

This chapter provides an overview of the design process and decisions made for

the execution of all three phases of this research. The chapter explains the three
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phase approach that is used to determine the utility of MOEAs for use in solving

the RTS tactical decision making problem. Phase 1 consists of the representation of

the RTS tactical decision making problem in a MOEA solvable format, as well as the

selection and integration of a MOEA library into the Spring RTS Engine. Phase 1

also details the reasoning behind the selection of MOEAs and the pursuit of covering

a variety of search methods in order to be able to determine which search style works

best for the RTS tactical decision making problem. Phase 2 includes the selection

and implementation of objectives in the off-line evaluation of various MOEAs to

determine the performance of different search methods on the RTS tactical decision

making problem. Finally, Phase 3 takes the best performing MOEA from Phase 2 and

its parameters into an on-line evaluation within the Spring RTS Engine. This MOEA

is tested against three different scripted tactics and the performance is analyzed to

determine potential MOEA RTS tactical decision making. The next chapter provides

greater detail with regard to the experimental steps.
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IV. Design of Experiments

4.1 Introduction

This chapter provides more information in the implementation of the steps de-

scribed in Chapter III. While Chapter III provided a high level view of the processes

used to perform the experiments gauging the effectiveness of MOEAs in an online

RTS environment, Chapter 4 aims to provide a step-by-step process and analysis into

how data is acquired and how selected objectives are implemented.

As in Chapter III, this chapter is split into a separate section for each primary

phase of research. The first section analyzes the process used to develop the inte-

gration between the selected MOEA libraries with the Spring RTS Engine. This is

followed by the procedure, code, and equations utilized to create and perform offline

simulation of combat in order to speed analysis of MOEA performance in battle. The

data found in the offline analysis is used to create an online tactical control manager

that is tested against three generic scripted tactical agents, and the results again

analyzed to determine MOEA performance within the RTS tactical decision making

problem.

4.2 Experimental Design

As discussed in Section 3.2, the research performed for this thesis effort is divided

into three distinct phases. Each phase results in the development of a tool required for

the next. These phases are sequential in order to construct an experimental process

capable of performing in depth analysis of the custom RTS tactical decision making

problem by relying on the output of previous phases.

Phase 1 begins with Di Trapani’s AFIT agent [6] and the PyGMO python MOEA

analysis library [51]. The objective of Phase 1 is to combine Di Trapani’s agent and the
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PyGMO code together in a way which allows online optimization of an RTS battlefield

using MOEAs. This requires the creation of a customized PyGMO problem which

represents the RTS battlefield for on-line analysis. This problem is called within the

group.py manager in the AFIT agent by utilizing the PyGMO libraries. There are no

metrics associated with this phase as the result is just a code based representation of

a round of an RTS battle.

Once the battlefield simulation created in Phase 1 is complete, it can be used to

test the performance of the MOEAs of interest. Each MOEA is tested with differ-

ing populations and generational limits in order to gauge the landscape of the RTS

combat search area. The tested population sizes are 20, 40, 60, 80, and 100. The

tested generational limits are 2, 3, 4, and 5. These options are chosen in order to

cover the range available to the population and generation limit properties while also

constraining expected calculation time to be within on-line time requirements. The

metrics used for analysis of MOEA performance are focused on hypervolume maxi-

mization over time, as a solution needs to be made quickly but also correctly. A set

of objectives are selected from the list in Section 3.5 in order to provide enough de-

scription as to the optimality of the results of a battle. The MOEA which is capable

of maximizing the rate of hypervolume [39] expansion over time is chosen as the best

option for implementation in online testing. This MOEA is then coded into the AFIT

agent as a tactical option within the group.py manager.

Phase 3 is the final step of this research. In this phase the previous phases’ results

are combined to create an online tactical decision making tool which is implemented

within the Spring RTS Engine. This tactic is compared against three scripted oppo-

nents which are chosen as representatives of basic RTS combat design. Each combat

between various tactical decision making methods is statistically analyzed according

to the win rate, number of units remaining, speed of combat, and remaining HP.
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4.3 Computer Platform and Software Layout

Online experimentation for this research is performed on the Spring RTS Engine

[25] version 0.98 using version 8.08 of the Balanced Annihilation mod [57]. The Spring

RTS Engine is selected due to the fact that it is open source and capable of heavy

modification for future testing. This level of modification allows for manipulation

of individual unit characteristics and features, as well as various cheat codes which

introduce ways to test very particular features of AI agents quickly through visual

simulation. The Balanced Annihilation mod allows for the use of many basic tenets of

standard RTS play such as resource gathering and easily identifiable unit types. This

mod is chosen as a representative of a generic RTS due to its implementation of two

types of resource gathering as well as having multiple specialized unit construction

facilities. The unit of choice for this experiment is the Stumpy Tank (see Figure

18, due to its arcing fire pattern, high armor score, and area of effect damage. The

tanks also have limited mobility and turn radius, along with a maximum turret swivel

speed, which adds complication to the decision making and allows more modification

of tactical decision making managers in determining an “optimal” fire pattern.

4.4 Design Phase 1 - Integration of Spring RTS and PyGMO

The integration of the Spring RTS Engine to the PyGMO code is handled through

the creation of a new manager in the existing AFIT agent. This new manager,

moea.py, is directly responsible for connecting the Spring RTS Engine and PyGMO

framework by utilizing PyGMO commands inside of the AFIT agent. The previous

version of the AFIT agent made combat decisions by relying on a set script within

the group.py manager [6]. The new version of the AFIT agent operates by having

group.py call on the custom PyGMO problem held within moea.py. The analysis
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class ROUND(base):

def __init__(self, allies=[[0,0,0,[0,0],0,0],[0,0,0,[0,0],0,0]],

↪→ enemies=[[0,0,0,[0,0],0,0],[0,0,0,[0,0],0,0]]):

copy allies matrix into self.allies

copy enemies matrix into self.enemies

initialize PyGMO for a 4 objective minimization problem, with

↪→ solution length equal to the number of allied units

set bounds of output to [0, number of enemies-1]

Figure 20. Custom PyGMO Problem Created for Tactic Optimization (Initialization)

performed within moea.py returns a string of commands go group.py which is then

implemented within the Spring RTS Engine.

The integration of the AFIT agent and the Spring RTS Engine is accomplished

by using the custom PyGMO problem ROUND within the moea.py file. The problem

is initialized as shown in Figure 20. To begin, ROUND requires two arrays of data, one

for allied units and another for enemy units. The initialization of the problem also

requires that a “base” form of the allies and enemies arrays exist so that some data

exists during PyGMO’s population island creation. If these arrays are not set within

the definition of the problem then PyGMO attempts to deepcopy arrays that have

not been initialized, which leads to a program fault. The layout of each line in the

array of units is shown in equation 8. The data required by the ROUND class includes

a Unit ID set by the Spring RTS Engine, the number of hit points remaining for that

unit, a binary indicator representing if a particular unit is “alive” or “dead”, that

unit’s position, and finally the unit’s damage capability and range.
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Unit = [Unit ID,HP,Unit Life Marker, [X Position,Z Position],Damage,Range]

(8)

Once data has been passed to the ROUND class, the arrays are copied into two local

variables self.allies and self.enemies. PyGMO is then initialized to prepare for

a 4 objective analysis of the input arrays, and each member of the output string is

bounded to a valid output command. The commands for this version of the RTS

agent are limited to attacking different enemy targets, so the number of potential

actions available to each unit is equal to the number of enemies on the screen.

Figure 21 shows the next step in the creation of a custom PyGMO problem -

analysis of a particular potential solution of a population. At this point within the

MOEA analysis, PyGMO has generated a population of solutions according to the

restrictions in Figure 20. The analysis of each member within a population starts

with the creation of two matrices for allied and enemy forces, astart/anew and

estart/enew, respectively. These matrices represent the initial state and the expected

resulting state from the analyzed solution. The values in anew and enew are modified

throughout the analysis in order to create data that is used for objective evaluation.

The first step in analyzing each solution is to check the resulting direct damage

from an attack wave. For each attacking unit the code confirms that the target is

within range and then reduces the targets HP by the attack value of the attacker.

If the target is within range, the target and any nearby enemies are damaged ap-

propriately. If this brings a unit’s HP below 0 then the unit is marked as dead by

setting their “alive” marker to 0. Once friendly forces fire, the algorithm calculates

the expected level of return fire from the remaining enemy forces. Once all damage

has been calculated the algorithm is ready to perform objective analysis of the enew

and anew matrices.

77



class ROUND(base): continued

# Begin objective analysis of solution

def _objfun_impl(self,x):

set starting matrices to self.allies, self.enemies

deepcopy start matrices to create end matrices

for each allied unit:

if target is within range:

deal direct damage

if other enemy is within area of effect range of shot:

deal indirect damage to that enemy

if enemy HP drops below 0:

enemy HP = 0

enemy = "dead"

for each enemy:

if enemy is alive:

select closest allied target

deal direct damage to allied target

if other allied unit is within area of effect range of shot:

deal indirect damage to that allied unit

if allied unit HP drops below zero:

allied unit HP = 0

allied unit = "dead"

Figure 21. Custom PyGMO Problem Created for Tactic Optimization (Calculation)
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class ROUND(base): continued

initialize all objectives to 0

for each allied unit:

if allied unit is "alive":

subtract 1 from objective 1

subtract allied unit HP from objective 2

subtract allied unit damage from objective 3

for each enemy unit:

if enemy unit is "alive":

add 1 from objective 1

add enemy unit HP from objective 2

add enemy damage to objective 3

count = 1

for each allied unit:

if target of allied unit = enemy unit:

subtract count from objective 4

count = count + 1

return (f1,f2,f3,f4,)

Figure 22. Custom PyGMO Problem Created for Tactic Optimization (Objectives)
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Figure 22 shows the final step of a custom PyGMO problem, the analysis of a set

of values and placement into a set of comparative objective values. The first step of

objective analysis is to initialize all objective variables to 0. This initialization must

be performed for each member of a population in order to prevent the results from a

previous member skewing the results for the remainder of the population. Once the

initialization is complete the effects of allied units are measured and subtracted from

the objectives 1, 2, and 3. As stated in Section 3.5, the objectives used are Units

Remaining, Difference in HP, Difference in Firepower, and Focus Fire. Once the al-

lied units’ effects on the battle have been computed and subtracted from objectives,

the results of the enemy units are similarly summed and added to the same three

objectives. The final step is to analyze objective 4, which evaluates the amount of

focus fire within a given solution. This objective is calculated by determining how

many allied units attack the same enemy. Each unit attacking the same enemy sub-

tracts (1 + number of units attacking that enemy from the objective). When all four

objectives have been measures the results are output back to PyGMO for population

modification. The entirety of this code can be found in Appendix A

4.5 Design Phase 2 - Offline Simulation

The experimentation within Phase 2 compares the performance of the different

MOEAs chosen for analysis, NSGA-II, SPEA2, and NSPSO. Each MOEA has a

different search mechanic, and this phase determines which general type of search

method is best for the tactical decision making search landscape. A description of

each of these MOEAs is given in Section 2.9.
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Testing MOEA Parameters.

The Phase 2 experimentation is performed by comparing the results from NSGA-

II, SPEA2, and PSO MOEAs against each other in order to determine which search

method performs best in the RTS tactical decision making problem. These three

MOEAs are selected because they cover a variety of generic search procedures. NSGA-II

performs a semi-random search of the problem domain by combining the current best

performing members of the population in order to generate new populations. SPEA2

follows a similar search method, but discards potentially better scoring individuals

in order to ensure an even coverage of the Pareto front. NSPSO focuses entirely on

migrating the members of its population towards local and global optimal performing

members of the population. These three MOEAs therefore cover the random, spread,

and focused search processes. The parameters tested for MOEA optimization are

population size and numbers of generations to test through. The population sizes

tested are 20, 40, 60, 80, and 100. Generational sizes scale from 2, 3, 4, and 5. Alto-

gether this gives 20 different experiments per MOEA, or 60 different experiments total

for Phase 2. Each experiment is performed ten times in order to create a statistical

baseline for analysis.

Measurement Metrics.

There are a variety of different metrics available for testing the usefulness of a

particular MOEA on a problem. The metrics are known as Quality Indicators, and

can be Pareto compliant or non-compliant. If a solution set A better than a different

solution set B by weak Pareto dominance, then any metric that states A is at least as

good as B is Pareto compliant. Metrics that fail to maintain the relationship between

A and B are known as Pareto non-compliant [39]. A quick synopsis of many possible

options is listed below:
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Error Ratio (ER).

The Error Ratio metric gives the ratio of members of the currently known Pareto

front vs. the members of the true Pareto front [39, p.255]. In other words, this metric

determines the percentage of PFtrue that has been found in the current generation.

A mathematical representation is available in equation 9 [39]. An ER of 0 signifies

that the current PFknown is the optimal Pareto front. An ER of 1 shows that there

are no current matches between any points in PFknown and PFtrue.

ER =

∑|PFknown|
i=1 ei
|PFtrue|

(9)

An issue with this quality indicator is that it requires PFtrue to be known, and as

such is not applicable in the problem discussed in this paper. The constantly changing

search landscape makes it impossible to nail down the exact optimal Pareto front.

Generational Distance (GD).

Generational Distance is another quality metric that compares PFknown to PFtrue.

This method compares the overall distance between the true Pareto front and the

currently available Pareto front. A mathematical representation is shown in equation

10 [39].

GD =
(
∑n

i=1 d
p
i )

1
p

|PFknown|
(10)

An issue that arises from the use of this indicator is that it is not Pareto compliant.

A Pareto non-compliant indicator can potentially mistake option B as being better

than option A in cases of weak Pareto dominance. Therefore generational distance

has the chance of showing incorrect optimal Pareto fronts due to the inherent method

of comparison.
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Hyperarea / Hypervolume.

Hyperarea, otherwise known as hypervolume for Pareto fronts involving more than

two objectives, attempts to equate the multidimensional area or volume covered by

a given population of potential solutions. This is a Pareto compliant indicator, as a

solution with a higher area or volume is always preferable to one which is smaller.

In order to generate this measurement, an origin point must be designated. The

area consists of the total volume covered by the area generated by all members of

the population and this origin point. For example, a two objective problem would

generate a triangle when combined with the origin point. The area of this triangle

would be the effective hyperarea of that Pareto front. A mathematical representation

of this indicator can be found in equation 11 [39].

HV =

(⋃
i

areai|veci ∈ PFknown

)
(11)

While this method does not require PFtrue to be used as a population can be

directly compared to another population of solutions based entirely on covered area

or volume, the availability of PFtrue allows the use of the hyperarea ratio metric.

This metric is very similar to the generational distance method as it compares the

currently covered area with the area covered by the true Pareto front. Its mathemat-

ical representation is provided in 12 [39], where H1 is the area covered by PFknown

and H2 is the area covered by PFtrue.

HR =
H1

H2

(12)

ε - indicator.

This method finds the smallest amount ε that, if added to option b (a solution

set pareto dominated by option a), causes b to cover a. This can be seen as another
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quality indicator in the same thought process as Generational Distance or some of

the other ratio-based indicators. Its purpose is to find the minimum error between

sets a and b, and use this minimum error as a grading scale to determine which set

of solutions is the better option. Due to the manner of determining the amount of

ε, this indicator is pareto compliant. This indicator can also be used either with or

without knowing PFtrue, as two or more populations can be compared to the current

“best” population.

Indicator Used In Experiment.

The hypervolume indicator is used in this experiment because it is Pareto com-

pliant and usable without knowing the true Pareto front. The hypervolume metric is

also included within the PyGMO library, and is pre-set to allow for four dimensional

objective analysis. The rate of expansion of a population’s hypervolume over time

will be used in order to determine how quickly an algorithm generates good solutions.

The concept behind this metric is that a “good” decision in a short amount of time is

better than arriving at the “best” solution after it is no longer useful. Hypervolumes

are expected to expand rapidly after the first couple of generational cycles. This

expansion will be used to determine which type of search approach best fits the RTS

tactical decision making problem.

In order to calculate the rate of hypervolume expansion, the hypervolumes for each

experiment parameter set is averaged. In order to create a measurable comparison

between very different starting positions, the rate of increase of the hypervolume is

chosen as the comparative metric. First, the hypervolume for a particular experiment

is found. Then the hypervolume for a series of single generation solution sets with

the currently tested number of population members is found and set as the initial

state for the experiment. This initial hypervolume is subtracted from the current
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hypervolume in order to find the net increase of hypervolume over the generations

of the MOEA. Finally this increased amount is divided by the total amount of time

required to complete the set number of generations under the currently tested MOEA.

This results in the metric shown in equation 13.

δ =
HVincrease
time

(13)

4.6 Testing of Phase 3 - Online Simulation

The third phase of the investigation includes the integration of the best performing

MOEA option from Phase 2 into the custom RTS tactical decision making problem

developed in Phase 1. This section is very straight forward, and uses the “cheated”

units in order to remove more variables from the combat. Performing full scale RTS

game simulations is both time consuming and introduces many more sources of po-

tential error, such as the location of resource generators and factories. initial trials

show that a small amount of difference in army construction time can result in one

side completing their army and launching an attack before the other side is ready.

Therefore, online simulation of battle is performed by instantly generating two sepa-

rate armies of 25 tanks at opposite ends of the battlefield and placing them into attack

mode. The initial start point can be seen in Figure 23. The two lines at the top and

bottom of the figure are the instantly generated armies which are programmed to use

the tactical decision making methods under test.

Once placed into attack mode, the two armies find the center point of the opposing

forces and move towards that point. Once enemies come within visual range, the

tactical decision making methods for each army are implemented.
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Figure 23. Starting Positions for Online Simulations

Tactical Methods to be Tested.

Four different tactical options are tested by live simulation in this experiment. The

first three are purely scripted options, which take the current battlefield into account

and choose targets based off of a single objective. The fourth option is the best

performing MOEA determined in the experimentation in Phase 2 of this experiment.

Default - Group Attack Closest Tactic.

The first option is the default version developed by Di Trapani [6]. This series

of actions first finds the center point of all selected allied units, and then finds the

enemy that is closest to this point. All allied units then attack this unit because it

has the highest chance of being the closest to more units. This tactic can be seen in

Figure 24.

86



Figure 24. Default Tactic in Use

Figure 24 shows how the entire army is aimed at a single unit which, at the time

of target selection, is the enemy closest to the center point of the friendly force. This

type of tactic is very good as quickly removing threats as they come within range.

Individual Attack Closest Tactic.

This option is very similar to the default option, but it makes attack decisions

based on individual units’ locations, rather than the group of units as a whole. It

iterates through each allied unit, checks the unit’s current location, and then deter-

mines which enemy is closest. The selected allied unit is then ordered to attack that

enemy. This results in a wave of fire, with each allied unit potentially attacking a

different enemy target. The purpose of this objective is to allow as much firepower

to be launched on each round of combat instead of wasting time moving to attack a

more centrally located target.

Figure 25 shows the proximity tactic being used. In this figure there are four

enemy units that are closest to the selected army, so the selected army’s fire is split

among all potential targets. This type of tactic is very good against numerous weak
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Figure 25. Proximity Tactic in Use

units who are encroaching on a position due to its spread of fire. This tactic reduces

potentially wasted shots by minimizing overkill.

Group Attack Weakest Tactic.

This option uses a different parameter as its selection method for attack. Rather

than trying to attack the closest target, this method seeks to kill the enemy with the

lowest remaining hit point value. As a group, allied units seek enemies within visual

range and find the one with lowest remaining hit points. All allied units then target

this unit. Once this unit is destroyed the next weakest unit is targeted and destroyed.

The purpose of this method is to quickly remove as many enemy units as possible,

and by doing so, eliminate their incoming damage as well.

The group attack weakest tactic is shown in Figure 26. This figure shows how

targeting prioritization has been moved to the left side of the enemy army due to

those enemy units having a lower hp total, as shown by their red hp bars. This tactic

is useful against a few strong enemies as it encourages friendly units to take down

targets one at a time, slowly whittling down enemy forces.
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Figure 26. Weak Tactic in Use

Selected MOEA.

The fourth tactical method tested is the best performing MOEA based off of the

data found during Phase 2. The optimality of a particular MOEA is based off of its

calculation time as well as the hypervolume found. As stated in Section 4.5, the metric

used to analyze the performance of each off-line MOEA is hypervolume expansion over

time. In each case the average hypervolume achieved by a MOEA/parameter set is

divided by the average time it took that set to complete. These new metrics are

compared in order to determine which MOEA has the fastest expanding search. The

utilization of this metric follows the logic of stating a quick but poor solution is just

as useless as a good solution that takes too long to evaluate. The ideal solution is the

best performing within time constraints.

The MOEA tactic shown in Figure 27 works by maximizing potential damage

according to the objectives chosen. This tactic’s decision making can be seen in the

figure by noticing how many units are set to directly attack a specific opponent while

other units attack units that are nearby. This spreads out the total damage dealing

capabilities of the selected army so that many enemy units are damaged instead of
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Figure 27. MOEA Tactic in Use

focusing completely on a single target. The selected units who are attacking enemies

near to the main enemy target are expecting to deal a certain amount of area of effect

damage which kills the primary target through indirect fire.

Online Simulation Measurement Metrics.

The metrics used for measuring and comparing Phase 3 are based on the speed

and efficiency of gameplay. The objective of the tactics algorithm is not just to win,

but to win effectively. The efficiency of the win can be based on the following factors:

Win/Loss Ratio.

The most important aspect of measuring the efficiency of a win is first to actually

win. The first metric measured in Phase 3 is the Win/Loss ratio between each of the

potential tactics options. This metric is binary - if an agent wins a specific match it

is given a 1, otherwise it is given a 0. The total result provides an average win rate

against opposing tactics options which are derived by summing the total outcomes of

an agent and dividing by the total number of runs.

90



Time of Battle.

Another objective of an agent is to win as quickly as possible in order to free up

an army for other use. If an army is kept in one place for too long then it cannot be

used as reinforcements or it could allow the opposing player to fortify their base in

expectation of the upcoming attack. For this reason the time of battle is an important

metric to track. The start time of battle is when the two armies are aware of each

other and the simple movement command becomes an attack command. This can

be tracked in game by watching the movement marker for each unit in an army. A

green marker means that a unit is passively moving towards a destination. A red

line shows that a unit is engaging a target. Combat start time is when the first red

targeting line appears in a simulation. Combat ends when one side’s forces have been

completely eliminated.

Remaining Units.

Another important consideration in battle is to minimize the number of losses

suffered during a conflict. This metric measures the number of units remaining at the

end of battle, and uses it to determine the effectiveness of a specific tactic. A tactic

that wins with an 80% success rate but with high losses may not be as useful as a

tactic with a 70% success rate with low losses.

Average Remaining Health of Units.

The final objective builds off of the concept built with the Remaining Units metric.

The summation of the remaining HP of all units is taken and then divided among

the number of remaining units. The purpose behind this objective is to gauge the

usefulness of the remaining units. An army of numerous heavily damaged units are

not as useful in later conflicts as a smaller army of stronger units. This metric is used

91



to gauge how a tactic performs against others and how that tactic acts to preserve

its units in battle.

4.7 Chapter Summary

This chapter provides a more in-depth review of the design process used to perform

the experimentation testing the viability of MOEA controlled RTS AI agents with

regard to the RTS tactical decision making problem. This chapter continues from the

initial framework discussed in Chapter 3, and provides additional information on the

specific layout and function of each part of the experiment. The processes described

in this chapter lead to the acquisition of the data in Appendices B, C, and C, which

are then used to perform the analysis in Chapter 5.
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V. Results and Analysis

5.1 Introduction

This describes the results achieved by completing the processes defined in Chapter

IV: Design of Experiments. It also provides analysis of these results to determine the

links behind decisions made in the experimental design and the overall outcome. The

analysis begins with the evaluation of the integration of the PyGMO MOEA code

with the Spring RTS Engine. Once the initial integration has been completed, an

offline simulator is used to test the capabilities of three different MOEAs: NSGA-II,

SPEA2, and NSPSO. These three MOEAs are tested under different generational

limits and population sizes in order to determine the effects of modifying their base

parameters. Once the best MOEA has been found via offline testing, the AFIT agent’s

tactical control manager is modified in order to use the best performing MOEA as an

online tactical decision making tool. This tactical tool is then tested against various

scripted tactics in order to evaluate the MOEA’s online performance.

5.2 Design Phase 1 - Integrating Spring and PyGMO

The first phase of this experimental design is the mapping of combat between

two armies composed of 25 tanks each into a grid layout, and the conversion of that

grid into an array usable within the PyGMO code. The first analysis of the default

attack formation for this layout is performed by creating 25 stumpy tanks in game,

and watching how they position to attack a specific point. The results for this test

are that the tanks line up in a roughly semi-circular shape and are 4-5 units deep at

the center point. A screenshot of the animation is shown shown in figure 28.

Once this initial test is complete, the next step is to ensure that in an actual battle,

the tanks are given enough time to position themselves in the same manner they use
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Figure 28. Simulation of 25 Tanks Attacking a Single Point

Figure 29. Two Examples of 25 vs 25 Tank Battles
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Figure 30. Code Layout of the Initial Round of Combat

to attack a specific point. The pseudocode for this advance to attack procedure is

shown previously in Section 3.6. The agent is able to replicate the layout due to

the fact that the agent’s code is set to designate a lead or scout unit and the other

units in the attack group are set to defend that lead unit. This creates a situation

where one unit is far ahead of the others, with the remaining 24 tanks following in

an unorganized huddle. This lead unit draws the fire of the opposing forces, which

allows the other 24 tanks to line up in an attack formation before beginning an attack.

Screenshots of two test cases of these battles are shown in Figure 29.

The results from Figures 28 and 29 indicate that a similar formation is created for

both instances. As seen in Figure 28, the formation is still roughly semi circular with

units positioning three to four units deep at the center point. This layout is duplicated

in python code by creating an array which represents the starting positions for each

unit participating in battle. The grid representing the array used to simulate this

combat is shown in Figure 30, with “a”’s representing agent controlled units and “e”’s

representing enemy units. The code version of the battle has many simplifications

required to allow the scene to be emulated in python. First, the actual position of the

units has to be made much more uniform. In BA, each unit takes up more than one

positional unit. Even the basic infantry unit requires a 2x2 positional square which

allows it to maneuver around other units. Tanks similarly take up more than one
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block due to their size. Limiting tanks to taking up a 1x1 square allows them to be

positioned in such a simply designed array. The actual locations of each unit is also

restricted to directly match Figure 30. This is done to create a uniform “first round of

combat” that can be used to compare MOEA performance. Online testing will allow

positions to be updated in real time. Another simplification required for the array

construction is ignoring tank and turret direction. In the Spring RTS engine, units

are restricted to only firing in the direction they are facing. Stumpy tanks, and other

turreted units have an independently controlled turret that can turn faster than the

main body, but this aiming still requires time that is not accounted for in the python

representation of combat.

Once the units are placed and x and y coordinates are assigned to each, the next

step is to apply the other attributes that define a stumpy tank. The actual hit point

scores of the units are able to be maintained - each unit has 1530 hit points. The

damage can also be carried directly over from the balanced annihilation mod info page

[63]. Stumpy units do 97 damage per direct damage hit, and 48 damage via indirect

fire. The range for this indirect damage is modified to only apply to adjacent targets.

For example if the enemy unit at position (7,6) is hit, then the units at (6,7), (7,7),

and (8,7) take a fraction of the primary weapon damage as indirect splash damage.

The extent of this indirect damage is modified by the proximity of adjacent units to

the primary target. Due to the simplification of the map to a simple grid pattern,

the distance for each of these adjacent units are the same.

Once the model has been constructed in can be used to begin Phase 2 testing.

Phase 2 testing uses the three different MOEAs to be compared and determines how

well they perform in the RTS tactical decision making problem.
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5.3 Testing of Phase 2 - Offline Simulation

Phase 2 testing begins with running the code generated in Phase 1 against various

MOEAs with different parameters. As stated in Section 3.5, the MOEAs under test

are SPEA2, NSGA-II, and NSPSO. The parameters tested are population capacity

and generation limit. Population sizes used are 20, 40, 60, 80, and 100. Generational

limits are 2, 3, 4, and 5. Each combination of generation limit and population size

are tested 10 times. The analysis of the performance of each MOEA over the given

problem domain are discussed in the following subsections.

Analysis of MOEA Performance in Tactics Optimization.

This section provides the data and analysis for phase 2 testing. This data includes

a compilation of average data values with regards to the metrics used to analyze

MOEA performance with regards to parameter changes and MOEA performance.

This raw data is then used to build a series of box plots which visually represent the

performance of MOEA parameter combinations. The raw data used to create both the

tables and the box plots can be found in Appendix B. The analysis of each population

of solutions is performed by measuring the hypervolume of the pareto front generated

by each individual population. The solutions contained in each population each build

a separate Pareto front which represents the effectiveness of that population. Each

member of the population represents a single point in four dimensional space, due to

the use of four different objective values. The volume of the four dimensional space

bounded by all members of the population can then be used as a metric to judge the

optimality and performance of one MOEA combination over another, as more ideal

solution sets are closer to the “true” Pareto front and farther away from the point of

measure.
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Table 2. HV Gain per Second for NSGA-II

(Pop,Gen) time(s) HV HV-1G (HV-1G)/T (Pop,Gen) time(s) HV HV-1G (HV-1G)/T

(20,2) 0.18 108791 9888 54004 (20,3) 0.26 114784 15881 61943

(40,2) 0.38 113352 3799 10176 (40,3) 0.52 127782 18229 35314

(60,2) 0.56 122477 11572 20961 (60,3) 0.77 126316 15412 20157

(80,2) 0.75 128913 16430 21860 (80,3) 1.06 129359 16877 15998

(100,2) 0.93 127300 8293 8851 (100,3) 1.31 133821 14814 11288

(Pop,Gen) time(s) HV HV-1G (HV-1G)/T (Pop,Gen) time(s) HV HV-1G (HV-1G)/T

(20,4) 0.33 117808 18906 57661 (20,5) 0.41 126496 27593 67794

(40,4) 0.66 137682 28128 42555 (40,5) 0.81 149829 40276 50042

(60,4) 0.98 143985 33081 33694 (60,5) 1.21 155515 44611 36805

(80,4) 1.39 145656 33173 23986 (80,5) 1.63 162476 49993 30597

(100,4) 1.70 161917 42909 25291 (100,5) 2.06 179696 60689 29401

Analysis of NSGA-II.

The averaged data of the NSGA-II algorithm can be seen in Table 2. This table

shows the average time, hypervolume (HV), hypervolume minus the initial hyper-

volume of a single generation (HV-1G), and the overall hypervolume gain over time

((HV-1G)/T). The table shows that for the case of NSGA-II, the increase of pop-

ulation size does not improve the overall hypervolume increase over time. In fact

increasing population from 20 to 100 decreased hypervolume per second rate by 84%

in 2 generations, and caused a 47% decrease in 5 generations. This decrease of per-

formance is caused by the NSGA-II algorithm’s approach to population generation.

The NSGA-II’s method of randomly combining high scoring members of the popula-

tion results in a semi-random search of the search landscape that is just as likely to

decrease the potential solution’s value as it is to increase due to the build of optimal

solutions[41]. The optimality of solutions on the custom problem created for this

research is based heavily on having multiple units fire on the same enemy unit. A
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random search has no way to generate solutions that focus fire on enemies, and these

solutions are necessary to create good objective scores.

Figure 31. Box Plots for HV Increase Over Time for NSGA-II 20 Population

The NSGA-II performed best with a population of 20. The statistical analysis for

this evaluation is shown in Figure 31. This box plot shows that over the course of five

generations the NSGA-II algorithm maintains a high level of variance, while showing

only a slight increase in effectiveness. The mean value throughout each generation

stays between a score of 50,000 and 75,000. The other population tests, shown in

Figure 32 show even worse results, with the majority failing to obtain a score of

50,000.

Analysis of SPEA2.

The results of the SPEA2 algorithm are shown in Table 3. The SPEA2 algorithm

performed 17% to 35% faster than the NSGA-II algorithm, but it is not able to

consistently outperform on a hypervolume per second basis, as shown in Figures

33 and 34. For the combination of 20 population and 3 generations, the NSGA-II
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Figure 32. Box Plots Showing HV Increase Over Time for NSGA-II Algorithm

Table 3. HV Gain per Second for SPEA2

(Pop,Gen) time(s) HV HV-1G (HV-1G)/T (Pop,Gen) time(s) HV HV-1G (HV-1G)/T

(20,2) 0.15 110446 4732 32081 (20,3) 0.18 111660 5946 32046

(40,2) 0.30 113061 415 1384 (40,3) 0.37 120926 8280 22073

(60,2) 0.46 123641 14283 30907 (60,3) 0.58 125101 15742 26971

(80,2) 0.62 120785 6007 9647 (80,3) 0.79 132537 17759 22342

(100,2) 0.77 120852 2033 2626 (100,3) 0.96 139219 20400 21176

(Pop,Gen) time(s) HV HV-1G (HV-1G)/T (Pop,Gen) time(s) HV HV-1G (HV-1G)/T

(20,4) 0.22 120426 14712 65799 (20,5) 0.26 131388 25673 100252

(40,4) 0.45 141023 28378 62851 (40,5) 0.54 154609 41963 78146

(60,4) 0.69 146389 37030 53962 (60,5) 0.81 172041 62682 77386

(80,4) 0.94 152152 37374 39801 (80,5) 1.08 162475 47697 44082

(100,4) 1.19 156868 38049 32086 (100,5) 1.40 180566 61746 44215
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Figure 33. Box Plots for HV Increase Over Time for SPEA2 20 Population

algorithm doubled the SPEA2’s score, but on the 100 population and 3 generation

test SPEA2 outmatched NSGA-II. This lack of consistency is caused by the SPEA2’s

search process. The SPEA2 forces a certain degree of separation between each solution

on the Pareto front, which could remove a potentially better solution from being used

in the next generation [43]. This forced widening of the search area via Pareto front

manipulation prevents the SPEA2 from providing consistent results.

The 20 population SPEA2 experiments performed the best according to statistical

analysis, as shown in Figure 33. While the algorithm has a slow start in comparison

to NSGA-II, with a score of less than 50,000, at 5 generations the algorithm is able

to reach an average score of 100,000. This score is achieved with a higher degree,

of variance, however, as shown by the increased scaling of the Y axis. The other

population options for the SPEA2 algorithm which are shown in Figure 34 show that

the SPEA2 algorithm’s performance follows the same track as NSGA-II. Increased

population size does not have a positive effect on the rate of hypervolume expansion.
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Figure 34. Box Plots Showing HV Increase Over Time for SPEA2 Algorithm

Table 4. HV Gain per Second for NSPSO

(Pop,Gen) time(s) HV HV-1G (HV-1G)/T (Pop,Gen) time(s) HV HV-1G (HV-1G)/T

(20,2) 0.15 133039 23486 156573 (20,3) 0.19 161719 52165 276901

(40,2) 0.30 146446 29968 99892 (40,3) 0.38 193610 77132 203603

(60,2) 0.46 150673 26351 57098 (60,3) 0.57 251850 127528 223943

(80,2) 0.62 155263 31266 50365 (80,3) 0.77 225272 101276 132153

(100,2) 0.79 166060 42336 53845 (100,3) 0.97 313424 189700 194767

(Pop,Gen) time(s) HV HV-1G (HV-1G)/T (Pop,Gen) time(s) HV HV-1G (HV-1G)/T

(20,4) 0.23 207710 98156 437031 (20,5) 0.26 257180 147626 567792

(40,4) 0.45 271242 154764 343238 (40,5) 0.52 398017 281539 539559

(60,4) 0.69 313963 189641 276168 (60,5) 0.80 525404 401082 498732

(80,4) 0.93 345348 221352 238989 (80,5) 1.10 447954 323957 296122

(100,4) 1.17 512206 388482 332127 (100,5) 1.37 577163 453440 330037
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Figure 35. Box Plots for HV Increase Over Time for NSPSO 20 Population

Analysis of NSPSO.

The NSPSO algorithm performed the best out of the three tested MOEAs, the

average results of which are shown in Table 4. The NSPSO algorithm completes its

search faster than both the NSGA-II and SPEA2 algorithms, and is also able to cover

the most hypervolume during its search. This leads the NSPSO algorithm to obtain

to a much higher hypervolume per second increase than the other two MOEAs.

The top performing combination of NSPSO parameters is 20 population mem-

bers with 5 generational evolutions. This result matches with the best performing

parameter sets of NSGA-II and SPEA2, although the NSPSO algorithm’s output is

much better than either of the other two tested MOEAs. While the NSPSO algo-

rithm shows a lot of variance in Figure 35, the worst population member found is

equivalent or better than the best members found in either NSGA-II or SPEA2. The

best performing member within the NSPSO population set for 20 population and 5

generations almost reaches a score of 2 million. This difference in performance be-
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Figure 36. Box Plots Showing HV Increase Over Time for NSPSO Algorithm

tween MOEAs clearly shows that the NSPSO algorithm outperforms the alternatives

with regards to the RTS tactical decision making problem.

While the best selection of parameters for the NSPSO algorithm shows a 500%

improvement over alternatives, the remainder of parameter settings in Figure 36 show

that experiments with higher population also outperform any results from NSGA-II

or SPEA2. These results also show a faster slope increase over the course of more

generations, showing that the NSPSO algorithm is capable of continuing to improve.

The high level of performance generated by the NSPSO algorithm is made possible

by the overall search landscape for the tactical decision making problem. In this

problem a certain number of units are required to fire on an enemy in order to

destroy it. The NSPSO is able to create a random initial population, and have the

other 19 members of the population slowly migrate towards the best solution. This

ensures that the best member of the population is maintained while other members
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of the population search the nearby area for the “peak”, or where the exact number

of friendly tanks fire on a single enemy in order to destroy it. This ability shows that

the 20 population - 5 generation search using NSPSO is the best performing option

out of all MOEAs that are tested.

Conclusions of Offline Simulation.

The offline testing of the three MOEAs: NSGA-II, SPEA2, and NSPSO ended in

a clear differentiation between the performances of each option. NSGA-II required

the longest amount of time to calculate and had a wide margin in resulting cham-

pion solution values. This poor performance is based on the mechanics behind the

NSGA-II algorithm itself and shows how a random selection of population members

and combination is not suitable for the tactical decision making problem at hand.

The SPEA2 algorithm, while fast, is not able to achieve consistent high quality

results through testing. The SPEA2 algorithm’s requirement of forcing a maximum

amount of space between members of a population is a detriment when attempting to

analyze the given search landscape. In the tactical decision making search landscape a

“more optimal” solution is most likely next to the currently most optimal population

member. This “more optimal” solution can typically be achieved by modifying the

current best solution to have a few more units focus on the primary target in order

to destroy that target this round. By forcing individuals to be a certain degree apart

the SPEA2 search prevents these potentially useful neighbors from being explored,

which results in a lower quality solution than what other MOEAs can find. In the

search landscape of the tactical decision making problem, the entirety of the SPEA2

algorithm’s search methodology works against it when it comes to finding solutions.

The NSPSO algorithm is the most optimal solution found through this series of

experiments. NSPSO achieves the best solutions in the fastest amount of time due
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to the process that it uses to create the next generation. This constant moving

of the population members towards the currently “most optimal” member provides

extensive coverage of a very localized portion of the search landscape which means

that an in-depth analysis of a small set of solutions is performed. This in-depth

analysis of a small area works very well with the focus fire objective used in the

PyGMO problem, which is why the NSPSO MOEA is capable of easily reaching six

figure hypervolume per second rates while NSGA-II and SPEA2 struggle to break

100,000. This focused search provides very good solutions with small populations,

and the addition of population members does not seem to be worth the additional

computational time required.

The most optimal setup found through this series of tests is to use the NSPSO

algorithm with 20 population and a 5 generation limit. This option is able to achieve

an average of the top rate of hypervolume increase per second within a quarter of

a second. The NSPSO algorithm appeared to perform at a similar rate with a 40

population and a 5 generation limit, however this doubled the required calculation

time. The 20 population option is chosen in order to allow the AFIT AI agent to

more quickly respond to battlefield changes and minimize the amount of computation

required to adapt to new situations.

5.4 Phase 3 - Online Simulation

This section describes the overall results of the on-line simulation between the

four tested tactic methods. The comparative results can be seen in the bar graphs

found in Figures 37, 38, 40, and 42. For these graphics, each tested tactic has its own

color, and data related to that tactic is only used if that tactic won. For example, the

“weak” tactic did not receive any victories in 20 attempts when facing “MOEA” and

“proximity”, so very little green shows in any of the graphics. Each of these matchups
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Table 5. Results of Default Tactic VS Other Tactics

Default VS: Win Rate Time Units Average HP

Proximity 60% 0:43 6.42 940.89

Weak 90% 0:37 6.72 1265.6

MOEA 20% 0:35 10 827.13

are performed twenty times, with each army starting at the top of the screen ten times

and at the bottom of the screen ten times.

Analysis of the Default Tactic.

The results of the default tactic can be found in Table 5. This table only includes

data from when the default tactic won its matchup. The default tactic achieves an

overwhelming 90% win rate against the weak tactic, and a 60% win rate against the

proximity tactic. This tactic did not perform well against the MOEA tactic, as it

achieved only a 20% win rate. The default tactic’s method of having the entire group

focus fire on the closest enemy unit results in additional area of effect damage to

nearby enemy units. This focused damage not only quickly destroys the unit, but

it also causes the outgoing fire to sweep across the enemies as they approach which

results in very little wasted fire. This is an advantageous method to use when fighting

in a confined area, but loses a lot of potential if they enemy is spread out since there

is less area of effect damage and more wasted shots.

Analysis of the Proximity Tactic.

The proximity tactic operates by ordering each individual unit to attack the closest

enemy relative to that unit’s position. The results of this tactic can be found in

Figure 6. This tactic causes the group to fire on a few enemy units at a time, which
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Table 6. Results of Proximity Tactic VS Other Tactics

Proximity VS: Win Rate Time Units Average HP

Default 40% 0:39 5.87 1017.65

Weak 100% 0:42 8.42 1229.54

MOEA 30% 0:42 6.83 736.43

Table 7. Results of Weak Tactic VS Other Tactics

Weak VS: Win Rate Time Units Average HP

Default 10% 0:42 7 1106.29

Proximity 0% N/A N/A N/A

MOEA 0% N/A N/A N/A

is detrimental in the short term, but helps in a longer battle. This is because a

more focused fire in the beginning stages of a battle destroys enemy units faster,

which significantly reduces the amount of incoming damage. Spreading out targets

slows down the rate of the initial kills. Conversely during the last stages of a fight

enemies are all typically damaged to some degree. Spreading out fire on different

targets minimizes the damage wasted at this point in the battle, and helps destroy

the remaining enemies.

Analysis of the Weak Tactic.

The weak tactic operates by constantly targeting the enemy with the lowest re-

maining HP. This results in a random initial target, followed by a sweeping motion

across the battlefield. After the first enemy is destroyed, nearby enemies have been

weakened by the area of effect damage. The weakest of these damaged units is se-
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Table 8. Results of MOEA Tactic VS Other Tactics

MOEA VS: Win Rate Time Units Average HP

Default 80% 0:33 8.87 1051.37

Proximity 70% 0:39 8.86 930.92

Weak 100% 0:33 9.6 1283.07

lected as the next target, which again damages the enemies nearby. The effects of

this tactic initially seem useful, but the process of having the entire group attack

these weakened units ensures an overall location of fire, which slows down the overall

damage capability of the weak tactic. This usually results in the weak tactic losing,

as seen by its 10% win percentage against the default tactic and complete lack of

wins against both proximity and the MOEA.

Analysis of the MOEA Tactic.

The MOEA tactic, based on the 5 generation, 20 population NSPSO algorithm,

is the best performing option out of the four tested tactics. It has a win percentage

of over 50% against every other option, and is also the fastest victory for each option.

The MOEA tactic also has the highest average of remaining units, with almost two

more units surviving per matchup. This combination of statistics shows that the

MOEA agent is the fastest and most survivable out of all tactical options.

Comparison of Tactical Results.

A more definitive analysis can be performed by directly comparing the numerical

results acquired through experimentation against each other by means of bar graphs

and box plots. The scaling of each box plot is scaled to match each other box plot

within the same objective, they are not universal. The data used in each analysis is
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Figure 37. Comparison of Win Percentages Between Tactic Options

only allowable when a particular tactical method wins. The Weak tactic, having only

two successes throughout all experimental runs, has its data based on two distinct

data points. The remainder of the data is compiled in a similar method.

Win Rate.

Figure 37 shows that the MOEA tactic (shown in purple) is capable of matching

or outperforming alternatives against each opponent. The MOEA tactic has an 80%

win rate against the default tactic vs. the proximity tactic’s 40%. The MOEA tactic

also outperforms the default tactic when facing the proximity tactic by maintaining a

10% higher rate of success. Both the MOEA and the Proximity tactic achieve a 100%

win rate against the group attack weakest tactic. The data shows that the Default

tactic has a slight advantage over the Proximity tactic. The Proximity tactic has a

slight advantage over the otehr scripted methods when attacking the Weak tactic.

The MOEA based tactic outperforms all scripted alternatives against all opponents.
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Figure 38. Comparison of Battle Duration Between Tactic Options

Battle Time.

Battle time is used as an objective in order to determine how long an army is held

up by an opposing army. The best performing decisions complete the battle quickly

and successfully in order to allow remaining forces to be used in other areas as soon

as possible. Figure 38 shows that the MOEA tactic, shown in purple, is capable of

completing combat faster on average than all alternatives in against every opponent.

The average data from Figure 38 is expanded on by the statistical information in

Figure 39, which shows a very similar statistical range for each opponent. The largest

variation of battle times occur when the Default tactic and the MOEA tactic face

against the Proximity tactic. This similarity shows that there may be some instances

where the Default tactic’s method of attacking the closest enemy may be faster than

attempting to spread fire against all opponents. The data for each tactic facing the

Weak tactic shows a very small variance, which means that each method consistently

achieves the same results through experimentation.
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Figure 39. Box Plots For Online Battle Duration

Figure 40. Comparison of Units Remaining After Battle Between Tactic Options

112



Figure 41. Box Plots For Number of Units Remaining

Remaining Units.

Another important metric of grading the optimality of a battle’s outcome is to

measure the number of units remaining. While winning a battle is good, winning that

same battle with a larger number of forces remaining is better. 40 shows a comparative

bar graph between the online performance of each tested tactical decision making

method. As in the previous objectives, the MOEA tactic continues to outperform

every other tactic tested. Therefore current results show that the MOEA tactic has

the highest win rate, completes battles the fastest, and has the most units remaining

after combat on average.

The statistical analysis of each tactical method’s performance is shown in Figure

41. These box plots show that the MOEA tactic has a larger variance than the other
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Figure 42. Comparison of Average Remaining HP After Battle Between Tactic Options

metrics when facing the Default Tactic or Proximity tactic, but it maintains a smaller

variance against the Weak tactic. It is also important to note that while the MOEA

tactic has a larger variance than alternatives, the mean of its variance is much higher

than Default or Proximity, which shows that the MOEA tactic has a high probability

of continuing to outperform any tested alternative.

Remaining Hit Points.

The final objective used to grade the performance of a winning battle is the average

remaining HP of all remaining units. This objective is used in order to determine the

future survivability of each remaining unit in future battles. The comparative results

of this objective can be seen in Figure 42. Unlike the previous objectives, the MOEA

tactic was not the best performing metric on average. However, the discrepancy

between the MOEA tactic’s performance and alternatives is much smaller than in

earlier metrics. Where previous differences were in the range of 15% to 20%, the

difference in the average HP remaining is less than 5%. This shows that the MOEA

tactic still performs well with regards to the other tested tactics.
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Figure 43. Box Plots For Average HP Remaining
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The statistical analysis of the various tactics’ performance with regards to remain-

ing HP values can be seen in Figure 43. The MOEA tactic has the highest variance

in the majority of battles, with only the Proximity vs Weak coming close to the range

of variance. These results show that remaining HP after combat is very difficult to

converge to an absolute expectation.

Conclusions of On-Line Battles.

The on-line simulation shows a clear distinction between the performance of the

various tactical options. The MOEA option is the clear winner, with the best results

in each of the obtained metric scores. The majority of the losses suffered by the

MOEA agent are caused by choosing an edge unit as the scout, which caused the

entire army to group against the side of the pathway. This bunching up prevented

many tanks from spreading out, which reduces outgoing fire and ensured that more

friendly units are hit by the enemy’s area of effect damage.

Another consideration in the performance of the battles is the speed at which

armies moved into position. Most armies are able to move relatively quickly, but the

MOEA tactic’s constant readjustment of targets during approach all but ensured that

its tanks would arrive and form up slower than the opponent. Also, the army located

on the lower section of the map appears to have a distinct advantage due to very

small details about the map’s design. The map has a slightly smaller area directly

above the standard battlefield, which means the upper army is more constrained in

how they move which sometimes leads to reduced effectiveness in combat.

5.5 Comparison of Results to Previous Research

While not directly comparable to the research performed in the RTS tactical

decision making world due to the difference in approaching the base problem, some
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preliminary comparisons can be made based off of the effective methods results. In

Churchill’s paper utilizing a modified Alpha-Beta script considering durations [13],

he is able to achieve a 91% to 92% win rate against scripted opponents within 5 ms.

The MOEA agent is not capable of reaching the same level of performance, but is also

analyzing a much larger battlefield. Churchill’s work focuses on placing a variety of 8

vs 8 armies against each other. The MOEA analysis is based off of a 25 vs 25 single

unit battle. While MOEA performance is much slower than the 5 ms restriction used

in Churchill’s paper, it is still capable of actively changing actions based on battlefield

situations. His process is expanded to create a portfolio greedy search algorithm for

analysis of larger scale combat [34]. This modified search was only tested against

other alpha-beta searches in order to present a comparative level of improvement

over his previous developments.

Additional research has been performed in the past analyzing the use of Monte

Carlo Tree Search methods on the RTS tactical decision making problem [64]. In his

research, Balla utilizes the UCT algorithm in order to train an agent to make combat

decisions in the Wargus RTS environment. His research shows that while MCTS are

trainable to achieve objective optimization, the UCT algorithm was unable to achieve

online performance, even with small army sizes of 4 units. This outcome shows that

the initial results of MOEAs for use in solving the RTS tactical decision making

problem are promising, as they allow solutions to be generated online without any

prior training.

5.6 Chapter Summary

This chapter reviewed and analyzed the data found during the experimentation

into the use of a MOEA as a tactical decision making tool in RTS games. A custom

problem representing the RTS tactical decision making problem is developed and in-
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tegrated into the PyGMO code. This code is then added to the Spring RTS engine

for use in online simulations. The three MOEAs under test are executed in the simu-

lated first round of combat, with the NSPSO algorithm drastically outperforming the

alternatives due to its more focused search methods. Finally, the NSPSO algorithm

is placed into the MOEA tactic for use in online testing. This MOEA tactic outper-

forms all three of the scripted methods, and demonstrates that MOEAs can be used

as tactical decision making tools in a real time environment.
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VI. Conclusion

6.1 Evaluation of Results

The results of the series of experiments accomplishes the objectives stated in

Chapter 1.4. The data acquired validates that MOEAs can perform correctly and

efficiently as a tactical decision making tool in an RTS AI agent, and have potential

for use in actual military simulation hardware. The final results of performance anal-

ysis show that the MOEA based agent is capable of matching the expected win rate

of tactical decision making methods discussed in Chapter 2.7, achieving an 80% win

rate against the default tactic with requiring any sort of prior training or intensive

tree search analysis. While initial testing required offline comparison between differ-

ent MOEAs, once an MOEA is selected there is no longer a requirement for offline

standardization in order to allow that MOEA to perform in an online environment.

Each objective is satisfied, with objective one serving as a design requirement

for the successful testing of objectives two and three. Objective two is thoroughly

investigated and the results of the three tested MOEAs indicate that knowledge of the

expected structure of the fitness function results in a better selection of an MOEA for

use, as shown in Section 5.3. This difference of utility between MOEAs is explained by

the ”No Free Lunch” theorem (Section 2.9), which states that there is no such thing as

a universally optimal algorithm that can efficiently solve all problems. Each problem

has an optimal method of approach which outperforms other potential solutions, but

this method of approach does not perform optimally in other search landscapes [47].

Therefore the user must have an understanding of the search landscape in order to

choose the best MOEA option.

The aggregated fitness function of the RTS tactical decision making problem is

found to have numerous peaks within a small range of each other due to the heavy
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reliance of a ”kill” during a round of combat. There are numerous ways to achieve a

”kill” within combat and that typically a solution with a high amount of focused fire

leads to a solution very close to one with a ”kill”. This analysis of the aggregated

fitness function for a tactical decision making agent performed for this series of ex-

periments is correct in stating that the NSPSO algorithm performs the ”best” due to

its ability to focus the search area of future generations around these semi-optimal

solutions. This more focused search of the landscape allows the particle swarm based

NSPSO algorithm to find results with nearly five times the hypervolume metric in-

crease per second of the population of solutions found by the more uniform search

structure used by SPEA or the random search method used by NSGA. Therefore

the result of objective two is that out of the three MOEAs chosen for this research,

NSPSO outperformed SPEA2 and NSGA-II by a large margin as shown in Section

5.3.

Objective three is performed by utilizing and analyzing the animations within the

Spring RTS engine. Each battle performed is viewed and measured in order to gather

the metrics used to measure the usefulness of the MOEAs and scripted tactics. By

using a series of online battles the NSPSO MOEA controlled tactical agent is placed

against a variety of scripted tactical methods. The MOEA outperformed the scripted

methods in all metrics considered. The MOEA tactic is able to combine a high

win rate and a fast battle completion time with a large amount of remaining units.

The use of multiple objectives when determining courses of action helps to overcome

some of the limitations created by the use of a single variable. For example, an

agent relying on a kill/death ratio or some modification thereof as it’s objective is

limited in capability when given an army that cannot outright kill an opponent in

a single round. The required foresight required to determine the course of future
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actions requires more computational time which is not available to the AFIT tactical

decision manager in its current form.

The current version of the AFIT tactical decision manager requires a large amount

of processing power for the quarter second needed to generate a solution. This increase

in processing power results in noticeable lag to a human opponent, which in turn slows

down gameplay and human player interaction with the Spring Engine. The lag is more

pronounced during the initial phases of combat between the time when armies come

within visual range of each other and lasts until units move into position. Other

tactical AI agents are not affected by this slowdown of the game, as their commands

run within the game environment itself and are therefore not affected by the game

user interface lockdown caused by prolonged processing.

The overall goal for this research, stated in Chapter 1, is accomplished. An MOEA

has been successfully integrated within the existing AFIT agent, and supplies solu-

tions that are capable of beating many different scripted agents. The AFIT agent

is now able to defeat these scripted agents in battle without requiring previous ex-

perience against an opponent or off-line computation and training. Once engaged

in combat the agent is able to quickly redetermine optimal firing solutions within a

quarter of a second.

6.2 Future Work

There are various vectors future researchers can follow due to the scope of inte-

grating AI into RTS games:

• Optimize building locations to optimize economy generation and maintain open

pathways

• Integrate the capability to change strategies to counter opponents
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• Integrate movement into the tactical decision making manager

• Reduce calculation time of the tactical manager to reduce lag impact to human

players

• Develop a new scouting manager which would remove the AFIT AI agent’s

reliance of removing fog of war

Each of these areas are important upgrades to the current performance of the

agent as well as another way to improve its ability to serve as a method to train

military personnel on battlefield decision making methods.

6.3 Final Remarks

The research presented in this thesis shows a strong argument for the integra-

tion of MOEAs into tactical decision making agents in both RTS and other military

combat simulations. The additional time required for the MOEA in comparison to

other scripted methods is negligible, and the results of the MOEA far exceed the

capabilities of the tested scripted agents, and performed as well as results achieved

in previous research [13, 37]. With more effort the time requirements for MOEA can

be further mitigated and additional command options can be included to create a

more robust agent capable of decision making in many different environments. The

integration of the MOEA controlled tactical decision manager significantly improves

the performance of the AFIT agent and serves as a stepping stone for future RTS AI

research.

122



Appendix A. Code for Offline Simulation

This Appendix provides the custom code created to integrate the PyGMO and

Spring RTS engine. The integration is performed through creating the moea.py file

and modifying the currently existing group.py manager in the AFIT agent.

1.1 moea.py

The moea.py file is a new manager placed in the .config/spring/AI/Skirmish/Tactics/*version*/python

folder. It is used to hold the custom MOEA problem class for the tactical decision

making problem as well as a new distance function to determine if enemies are within

range.

from PyGMO.problem import base

from math import *

from copy import deepcopy

import agent

def dist(p1,p2):

return((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2)**0.5

class ROUND(base):

def __init__(self, allies=[[0,0,0,[0,0],0,0],[0,0,0,[0,0],0,0]],

↪→ enemies=[[0,0,0,[0,0],0,0],[0,0,0,[0,0],0,0]]):

# Solution is len(allies), with 4 objectives

self.allies = allies

self.enemies = enemies

super(ROUND,self).__init__(len(self.allies),0,4)

# Potential solutions are constrained to the number of enemies
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self.set_bounds(0,len(self.enemies)-1)

def _objfun_impl(self,x):

# Matrices are [ID, HP, ALIVE, [XPOS,ZPOS], DAM, RANGE]

astart = self.allies

estart = self.enemies

anew = deepcopy(astart)

enew = deepcopy(estart)

# Simulate allied units firing

for i in range(0,len(anew)):

target = int(x[i])

if dist(anew[i][3],enew[target][3]) <= anew[i][5]:

enew[target][1] = enew[target][1] - anew[i][4]

# PROXIMITY DAMAGE CHECK

for k in range(0,len(enew)):

if k != int(x[i]):

if dist(enew[target][3],enew[k][3]) <= 48:

enew[k][1] = enew[k][1] - (anew[i][4]*(48 - dist(

↪→ enew[target][3],enew[k][3])) / 72)

# Check for destroyed enemy units

for i in range(0,len(enew)):

if enew[i][1] <= 0:

enew[i][1] = 0

enew[i][2] = 0

# Simulate enemies firing
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for i in range (0,len(enew)):

pot_target = []

for j in range(0,len(anew)):

apos = anew[j][3]

epos = enew[i][3]

distance = dist(apos, epos)

pot_target.append(distance)

sort = sorted(range(len(pot_target)), key=pot_target.__getitem__

↪→ )

target = sort[0]

anew[target][1] = anew[target][1] - enew[i][4]

if anew[target][1] < 0:

anew[target][1] = 0

if anew[target][1] == 0:

anew[target][2] = 0

# Difference in number of units

f1 = 0

# Difference in HP totals

f2 = 0

# Difference in damage capability

f3 = 0

# Focus fire

f4 = 0

for i in range(0,len(enew)):

f1 = f1 + enew[i][2]

f2 = f2 + enew[i][1]
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if enew[i][2] == 1:

f3 = f3 + enew[i][4]

for i in range(0,len(anew)):

f1 = f1 - anew[i][2]

f2 = f2 - anew[i][1]

if anew[i][2] == 1:

f3 = f3 - anew[i][4]

for i in range(0,len(enew)):

count = 1

for j in range(0,len(anew)):

if int(x[j]) == i:

f4 = f4 - count

count = count + 1

return (f1,f2,f3,f4,)

1.2 group.py

The group.py manager has been modified to implement the new PyGMO code.

Like the other python files it is also located in .config/spring/AI/Skirmish/*version*/python.

The changes made to account for a tactical decision making search include importing

moea.py at the beginning of the file and changing the attack function within the

manager. The original version of the attack function is saved as “default” and is used

as a comparison for test throughout Phase 3 of the experimentation.

import ctypes, math

import cdata
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from PyGMO import *

from PyGMO.util import *

import moea

cdata.clb.move.argtypes = [ctypes.c_int, ctypes.c_int,

ctypes.c_float, ctypes.c_float]

class Group:

groupId = 0

def __init__(self, sid, gMap, unitManager, tactics):

self.sid = sid

self.gMap = gMap

self.unitManager = unitManager

self.units = []

self.defense = True # Am I the current defense group

self.order = ’move’

self.lastIdleEventFrame = 0

self.pendingIdleEvent = False

self.groupId = Group.groupId

self.mode = ’ground’

Group.groupId += 1

self.tactics = tactics

def remove(self, unit):

self.units.remove(unit)

if len(self.units) == 0:
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return False

else:

return True

def add(self, unit):

if len(self.units) == 0:

if unit.defi.name in self.unitManager.aircraftNames:

self.mode = ’air’

else:

self.mode = ’ground’

self.units.append(unit)

unit.group = self

def setAttacking(self):

self.defense = False

self.units.sort(key=lambda unit: unit.defi.speed)

# Attack command modified 0.4.1

def attack(self):

if self.tactics == ’default’:

# Update gMap unit pos and time stamp

# clear old enemy values in gMap

for cell in self.gMap.iterateCells():

cell.enemyGroundUnits = []

# Get position of each enemy ground unit; enemyGroundUnits is a

↪→ dict

enemyMap = self.unitManager.enemyGroundUnits

size = len(enemyMap)
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unitIds = enemyMap.keys()

enemyPositions = cdata.clb.getPositions(self.sid, unitIds, size)

for i in range(size):

enemy = enemyMap[unitIds[i]]

# attach pos to enemy unit

pos = enemyPositions[i]

enemy.pos = pos

# get cell containing pos

cell = self.gMap.getCellContainingPoint(pos)

# attach enemy unit to cell.enemy*.append(unit)

cell.enemyGroundUnits.append(enemy)

xavg, zavg = self._getCenterOfMass()

enemy = None

for cell in self.gMap.generateCells((xavg, 25.0, zavg)):

enemyBuilding = cell.enemyBuilding

enemies = cell.enemyGroundUnits

if not enemyBuilding is None:

# attack building

enemy = enemyBuilding

break

elif len(enemies) > 0:

# attack unit

enemy = self._getClosestEnemy(xavg, zavg, enemies)

break

if self.mode == ’air’:

enemy = self.unitManager.enemyCom

if enemy is None:

return
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elif self.unitManager.LOS[enemy.unitId]:

self.order = ’attack’

self.attackEnemy(enemy)

else:

# Since enemy is outside of LOS, find a point to move to

self.order = ’move’

pos = enemy.pos

self.movePos = pos

if self.mode == ’air’:

for unit in self.units:

cdata.clb.move(self.sid, unit.unitId, pos[0], pos[2])

else:

target, guards = self.units[0], self.units[1:]

cdata.clb.move(self.sid, target.unitId, pos[0], pos[2])

self._guard(target, guards)

elif self.tactics == ’proximity’:

# Update gMap unit pos and time stamp

# clear old enemy values in gMap

for cell in self.gMap.iterateCells():

cell.enemyGroundUnits = []

# Get position of each enemy ground unit; enemyGroundUnits is a

↪→ dict

enemyMap = self.unitManager.enemyGroundUnits

size = len(enemyMap)

unitIds = enemyMap.keys()

enemyPositions = cdata.clb.getPositions(self.sid, unitIds, size)

for i in range(size):

enemy = enemyMap[unitIds[i]]
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# attach pos to enemy unit

pos = enemyPositions[i]

enemy.pos = pos

# get cell containing pos

cell = self.gMap.getCellContainingPoint(pos)

# attach enemy unit to cell.enemy*.append(unit)

cell.enemyGroundUnits.append(enemy)

xavg, zavg = self._getCenterOfMass()

enemy = None

for cell in self.gMap.generateCells((xavg, 25.0, zavg)):

enemyBuilding = cell.enemyBuilding

enemies = cell.enemyGroundUnits

if not enemyBuilding is None:

# attack building

enemy = enemyBuilding

break

elif len(enemies) > 0:

# attack unit

enemy = self._getClosestEnemy(xavg, zavg, enemies)

break

if self.mode == ’air’:

enemy = self.unitManager.enemyCom

if enemy is None:

return

elif self.unitManager.LOS[enemy.unitId]:

self.order = ’attack’

for unit in self.units:
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selfPos = cdata.clb.getUnitPosition(self.sid, unit.unitId

↪→ )

pot_target = []

for enemy in self.unitManager.enemyGroundUnits:

enemyPos = cdata.clb.getUnitPosition(self.sid, enemy)

Pos1 = [selfPos[0],selfPos[2]]

Pos2 = [enemyPos[0],enemyPos[2]]

distance = moea.dist(Pos1,Pos2)

pot_target.append([distance,enemy])

target = sorted(pot_target)

cdata.clb.attack(self.sid, unit.unitId, target[0][1])

else:

# Since enemy is outside of LOS, find a point to move to

self.order = ’move’

pos = enemy.pos

self.movePos = pos

if self.mode == ’air’:

for unit in self.units:

cdata.clb.move(self.sid, unit.unitId, pos[0], pos[2])

else:

target, guards = self.units[0], self.units[1:]

cdata.clb.move(self.sid, target.unitId, pos[0], pos[2])

self._guard(target, guards)

# ATTACK WEAKEST

elif self.tactics == ’weak’:

# Update gMap unit pos and time stamp

# clear old enemy values in gMap

for cell in self.gMap.iterateCells():
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cell.enemyGroundUnits = []

# Get position of each enemy ground unit; enemyGroundUnits is a

↪→ dict

enemyMap = self.unitManager.enemyGroundUnits

size = len(enemyMap)

unitIds = enemyMap.keys()

enemyPositions = cdata.clb.getPositions(self.sid, unitIds, size)

for i in range(size):

enemy = enemyMap[unitIds[i]]

# attach pos to enemy unit

pos = enemyPositions[i]

enemy.pos = pos

# get cell containing pos

cell = self.gMap.getCellContainingPoint(pos)

# attach enemy unit to cell.enemy*.append(unit)

cell.enemyGroundUnits.append(enemy)

xavg, zavg = self._getCenterOfMass()

enemy = None

for cell in self.gMap.generateCells((xavg, 25.0, zavg)):

enemyBuilding = cell.enemyBuilding

enemies = cell.enemyGroundUnits

if not enemyBuilding is None:

# attack building

enemy = enemyBuilding

break

elif len(enemies) > 0:

# attack unit

enemy = self._getClosestEnemy(xavg, zavg, enemies)
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break

if self.mode == ’air’:

enemy = self.unitManager.enemyCom

if enemy is None:

return

elif self.unitManager.LOS[enemy.unitId]:

self.order = ’attack’

pot_target = []

for enemy in self.unitManager.enemyGroundUnits:

enemyHP = cdata.clb.getUnitHealth(self.sid, enemy)

pot_target.append([enemyHP,enemy])

target = sorted(pot_target)

for unit in self.units:

cdata.clb.attack(self.sid, unit.unitId, target[0][1])

else:

# Since enemy is outside of LOS, find a point to move to

self.order = ’move’

pos = enemy.pos

self.movePos = pos

if self.mode == ’air’:

for unit in self.units:

cdata.clb.move(self.sid, unit.unitId, pos[0], pos[2])

else:

target, guards = self.units[0], self.units[1:]

cdata.clb.move(self.sid, target.unitId, pos[0], pos[2])

self._guard(target, guards)

# USE MOEA

elif self.tactics == ’moea’:
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# Update gMap unit pos and time stamp

# clear old enemy values in gMap

for cell in self.gMap.iterateCells():

cell.enemyGroundUnits = []

# Get position of each enemy ground unit; enemyGroundUnits is a

↪→ dict

enemyMap = self.unitManager.enemyGroundUnits

size = len(enemyMap)

unitIds = enemyMap.keys()

enemyPositions = cdata.clb.getPositions(self.sid, unitIds, size)

for i in range(size):

enemy = enemyMap[unitIds[i]]

# attach pos to enemy unit

pos = enemyPositions[i]

enemy.pos = pos

# get cell containing pos

cell = self.gMap.getCellContainingPoint(pos)

# attach enemy unit to cell.enemy*.append(unit)

cell.enemyGroundUnits.append(enemy)

xavg, zavg = self._getCenterOfMass()

enemy = None

for cell in self.gMap.generateCells((xavg, 25.0, zavg)):

enemyBuilding = cell.enemyBuilding

enemies = cell.enemyGroundUnits

if not enemyBuilding is None:

# attack building

enemy = enemyBuilding

break
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elif len(enemies) > 0:

# attack unit

enemy = self._getClosestEnemy(xavg, zavg, enemies)

break

if self.mode == ’air’:

enemy = self.unitManager.enemyCom

if enemy is None:

return

elif self.unitManager.LOS[enemy.unitId]:

self.order = ’attack’

self.allies = []

self.enemies = []

for unit in self.units:

hp = cdata.clb.getUnitHealth(self.sid, unit.unitId)

pos = cdata.clb.getUnitPosition(self.sid, unit.unitId)

self.allies.append([unit.unitId, hp, 1, [pos[0],pos

↪→ [2]],97, 350])

for enemym in self.unitManager.enemyGroundUnits:

hp = cdata.clb.getUnitHealth(self.sid, enemym)

pos = cdata.clb.getUnitPosition(self.sid, enemym)

self.enemies.append([enemym, hp, 1, [pos[0],pos[2]],97])

#self.calculating = 0

#print ’Number allies = {0}’.format(len(self.allies))

prob = moea.ROUND(self.allies, self.enemies)

algo = algorithm.nspso(gen=5)

isl = island(algo,prob,20)

popu = isl.population

popu = algo.evolve(popu)
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#print ’Best Solution is {0}’.format(popu.champion.x)

#print ’Optimization score is {0}’.format(popu.champion.f)

#print ’Closest Calculating Complete’

best = popu.champion.x

# EVALUATE CHAMPION

for i in range(0,len(best)):

cdata.clb.attack(self.sid, self.allies[i][0], self.

↪→ enemies[int(best[i])][0])

return

else:

# Since enemy is outside of LOS, find a point to move to

self.order = ’move’

pos = enemy.pos

self.movePos = pos

if self.mode == ’air’:

for unit in self.units:

cdata.clb.move(self.sid, unit.unitId, pos[0], pos[2])

else:

target, guards = self.units[0], self.units[1:]

cdata.clb.move(self.sid, target.unitId, pos[0], pos[2])

self._guard(target, guards)

def attackEnemy(self, enemy):

for unit in self.units:

cdata.clb.attack(self.sid, unit.unitId, enemy.unitId)
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def guard(self, target):

self._guard(target, self.units)

def _guard(self, target, guards):

for guard in guards:

cdata.clb.guardUnit(self.sid, guard.unitId, target.unitId)

def _updateUnitPositions(self):

unitIds = [unit.unitId for unit in self.units]

size = len(self.units)

friendlyPositions = cdata.clb.getPositions(self.sid, unitIds, size)

for unit, pos in zip(self.units, friendlyPositions):

unit.pos = pos

return friendlyPositions

def _getCenterOfMass(self):

size = len(self.units)

xsum = zsum = 0

for pos in self._updateUnitPositions():

xsum += pos[0]

zsum += pos[2]

xavg = xsum/size

zavg = zsum/size

return xavg, zavg

def _getClosestEnemy(self, x, z, enemies):

minDist = 25600

closest = None
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for enemy in enemies:

dist = calcDist((x, 0.0, z), enemy.pos)

if dist < minDist:

minDist = dist

closest = enemy

return enemy

def calcDist(p1, p2):

’Calculate distance from p1 to p2 in true euclidean coordinates’

return math.sqrt((p2[0] - p1[0])**2 + (p2[2] - p1[2])**2)

class IdleEventFilter:

’Ensures only one idleEvent per group per interval’

def __init__(self):

self.frame = 0

def newEvent(self, group):

if self.frame > group.lastIdleEventFrame:

group.lastIdleEventFrame = self.frame

group.pendingIdleEvent = False

return True

else:

group.pendingIdleEvent = True

return False
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1.3 agent.py

The agent.py file, located in .config/spring/AI/Skirmish/Tactics/*version*/python,

is changed in order to incorporate the PyGMO software as well as to allow the instant

creation of units for the purpose of analyzing battlefield performance of the tactical

agent. The instant generation of units is performed in the update portion of the

agent.py file, as it is where a time-based command can be implemented. Only the

first portion of the agent.py file is be displayed here as the remainder of the file is

unchanged from the original version.

import ctypes, shelve

import cdata, gamemap, unitmanager, buildmanager, defensemanager,

↪→ attackmanager

import group

from PyGMO import *

from PyGMO.util import *

import moea

# load callback library using ctypes

cdata.clb.saveAgentClb.argtypes = [ctypes.c_int, ctypes.py_object]

class Agent:

def __init__(self, sid, cap):

self.sid = sid # skirmishAI ID number

print ’<Agent {0}> saving callback’.format(sid)

cdata.clb.saveAgentClb(sid, cap) # store callback in library
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self.frame = 0

if not cdata.unitDefsLoaded:

cdata.loadUnitDefs(sid)

cdata.unitDefsLoaded = True

gamemap.loadMapData(sid)

print ’<Agent {0}> map data loaded’.format(sid)

config = cdata.playerConfigs[sid]

self.collectData = config[1]

strategy = cdata.strategies[config[0]]

# tactics searches config in cdata.py

self.tactics = config[2]

print ’<Agent {0}> has {1} tactic selected’.format(sid, self.tactics

↪→ )

gMap = gamemap.Map(sid)

self.unitManager = unitmanager.UnitManager(sid, gMap)

self.idleEventFlilter = group.IdleEventFilter()

self.attackManager = attackmanager.AttackManager(

sid, self.idleEventFlilter)

# tactics passed to defense manager so it can be passed to group

self.defenseManager = defensemanager.DefenseManager(

sid, strategy, self.attackManager, self.unitManager,

gMap, self.idleEventFlilter, self.tactics)

self.buildManager = buildmanager.BuildManager(

sid, strategy, gMap, self.defenseManager)

cdata.clb.cheat(sid)

self.data = []

def update(self, frame):
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self.frame = frame

# Quit after 37 minutes

# Number of minutes * 60 sec/min * 30 frame/sec

if frame > 5 * 60 * 30:

self._endGame(’timeup’)

if frame % 5 == 0:

self.idleEventFlilter.frame = frame

self.defenseManager.update(frame)

self.attackManager.update(frame)

if frame % 15 == 0:

self.buildManager.update(frame)

# Write to file every 5 seconds

if self.collectData and frame % (5 * 30) == 0:

self._captureState()

if frame == 30*1:

if self.sid == 0: # tank 155 infantry 123

for i in range(0,25):

cdata.clb.giveUnit(0,(2048,0,900),ctypes.c_int(155))

if self.sid == 1:

for i in range(0,25):

cdata.clb.giveUnit(1,(2048,0,3100),ctypes.c_int(155))

if frame == 30*30:

self.defenseManager.group.setAttacking()

self.attackManager.add(self.defenseManager.group)

self.defenseManager.resetGroup()
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1.4 config.txt

The config.txt is replaced with a variety of combat focused tactics which allow

for the instantaneous use of the tactical changes in the group.py file to take effect.

Each of the first three lines is focused entirely on producing a certain number of

Stumpy tanks to battle. The final tactic “tac” places 100% effort on economic con-

struction, which means that the commander unit does not construct any new units

throughout the life of the game. This tactic is introduced to facilitate the instanta-

neous army generation used for the online simulation of combat.

# | B E D U|f p r j h w|j f s s p s j|f k t|M S|

5v5 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 3 3

13v13 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 4 4

25v25 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 6 6

tac 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 3 3
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Appendix B. Raw Data for Offline Simulation

This Appendix provides the raw data used for the creation of the tables discussed

in Section 5.3. The appendix is split into three sections: one for each MOEA used.

Each section is split into five subsections which refer to the different population

settings used during the testing of each MOEA. Each subsection begins with a

statement of the average hypervolume found for a single generation which is used

for the remainder of that subsection as the variable 1G. This variable is used in order

to find the values of the average hypervolume increase per second.

2.1 Data for NSGA-II Algorithm

NSGA-II Algorithm Data for 20 Population.

Average Initial Hypervolume for 20 Population (1G) = 98903

Table 9. NSGA-II 20 Population, 2 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -441 -41 0.18 108450 9547 53041

2 1 -5 -421 -43 0.18 103175 4272 23735

3 1 -5 -470 -42 0.18 103310 4407 24485

4 1 -4 -387 -49 0.18 108214 9311 51729

5 1 -4 -375 -49 0.18 109460 10557 58652

6 1 -5 -441 -46 0.18 109635 10732 59624

7 1 -5 -475 -50 0.19 119455 20552 108170

8 1 -5 -398 -50 0.18 109925 11022 61235

9 1 -5 -424 -41 0.18 106196 7293 40518

10 1 -5 -447 -49 0.19 110085 11182 58854

avg 1 -4.8 -428 -46 0.18 108791 9888 54004
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Table 10. NSGA-II 20 Population, 3 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -472 -47 0.26 110920 12017 46220

2 1 -5 -410 -50 0.26 113245 14342 55163

3 1 -5 -435 -49 0.24 112295 13392 55801

4 1 -5 -464 -50 0.25 116000 17097 68389

5 1 -5 -410 -50 0.26 114750 15847 60951

6 1 -5 -421 -47 0.26 106275 7372 28355

7 1 -5 -461 -48 0.26 131114 32211 123890

8 1 -4 -381 -49 0.25 109866 10963 43853

9 1 -5 -455 -51 0.26 118155 19252 74047

10 1 -5 -450 -51 0.26 115220 16317 62759

avg 1 -4.9 -436 -49 0.26 114784 15881 61943

Table 11. NSGA-II 20 Population, 4 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -458 -53 0.33 123830 24927 75537

2 1 -5 -447 -46 0.33 122025 23122 70068

3 1 -5 -467 -41 0.33 116660 17757 53810

4 1 -5 -432 -50 0.31 117880 18977 61217

5 1 -5 -481 -46 0.33 119880 20977 63568

6 1 -5 -452 -39 0.33 105455 6552 19855

7 1 -5 -458 -39 0.33 125575 26672 80825

8 1 -5 -458 -42 0.33 115658 16755 50774

9 1 -5 -467 -41 0.33 117705 18802 56977

10 1 -5 -404 -50 0.33 113415 14512 43977

avg 1 -5.0 -452 -45 0.33 117808 18906 57661
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Table 12. NSGA-II 20 Population, 5 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -441 -50 0.41 119450 20547 50115

2 1 -5 -450 -50 0.40 115145 56242 140606

3 1 -5 -472 -47 0.41 113070 14167 34554

4 1 -5 -458 -44 0.40 114811 15908 39771

5 1 -5 -410 -55 0.42 125980 27077 64470

6 1 -6 -490 -42 0.41 161620 62717 152968

7 1 -5 -475 -44 0.41 122385 23482 57274

8 1 -5 -464 -55 0.41 130130 31227 76164

9 1 -5 -447 -48 0.39 108330 9427 24173

10 1 -5 -461 -43 0.40 114040 15137 37843

avg 1 -5.1 -457 -48 0.41 126496 27593 67794
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NSGA-II Algorithm Data for 40 Population.

Average Initial Hypervolume for 40 Population (1G) = 109554

Table 13. NSGA-II 40 Population, 2 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -438 -44 0.38 111008 1454 3827

2 1 -4 -358 -47 0.38 104492 -5062 -13320

3 1 -5 -464 -48 0.38 115290 5736 15096

4 1 -5 -435 -45 0.39 106870 -2684 -6881

5 1 -5 -461 -46 0.37 124110 14556 39342

6 1 -5 -478 -45 0.38 109855 301 493

7 1 -5 -432 -48 0.38 109808 254 669

8 1 -5 -390 -52 0.38 120365 10811 28451

9 1 -5 -470 -50 0.37 117500 7946 21477

10 1 -5 -470 -38 0.38 114230 4676 12306

avg 1 -4.9 -440 -46 0.38 113352 3799 10176

Table 14. NSGA-II 40 Population, 3 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -418 -65 0.51 150150 40596 79601

2 1 -5 -410 -50 0.52 118170 8616 16570

3 1 -5 -472 -47 0.51 113027 3473 6811

4 1 -5 -464 -50 0.52 117440 7886 15166

5 1 -5 -418 -53 0.51 122660 13106 25699

6 1 -5 -484 -48 0.52 132550 22996 44224

7 1 -5 -458 -52 0.51 120880 11326 22209

8 1 -5 -470 -42 0.52 113685 4131 7945

9 1 -5 -390 -51 0.52 118830 9276 17839

10 1 -6 -498 -51 0.52 170433 60879 117076

avg 1 -5.1 -448 -51 0.52 127782 18229 35314
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Table 15. NSGA-II 40 Population, 4 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -415 -54 0.65 132720 23166 35641

2 1 -5 -458 -51 0.67 121490 11936 17816

3 1 -6 -501 -53 0.65 159318 49764 76561

4 1 -5 -472 -48 0.65 131360 21806 33548

5 1 -6 -501 -47 0.67 157602 48048 71714

6 1 -5 -478 -50 0.67 148740 39186 58487

7 1 -5 -484 -52 0.66 152120 42566 64495

8 1 -5 -467 -49 0.66 128115 18561 28123

9 1 -5 -472 -49 0.67 125010 15456 23069

10 1 -5 -455 -42 0.67 120340 10786 16099

avg 1 -5.2 -470 -50 0.66 137682 28128 42555

Table 16. NSGA-II 40 Population, 5 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -470 -55 0.82 158635 49081 59855

2 1 -5 -432 -60 0.80 141320 31766 39708

3 1 -5 -461 -49 0.81 114205 4651 5742

4 1 -5 -467 -52 0.80 174941 65387 81734

5 1 -6 -487 -45 0.81 151890 42336 52267

6 1 -6 -501 -49 0.81 159174 49620 61260

7 1 -6 -495 -60 0.79 178200 68646 86894

8 1 -6 -490 -53 0.81 171064 61510 75939

9 1 -5 -410 -57 0.81 130440 20886 25786

10 1 -5 -467 -45 0.79 118425 8871 11230

avg 1 -5.4 -468 -53 0.81 149829 40276 50042
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NSGA-II Algorithm Data for 60 Population.

Average Initial Hypervolume for 60 Population (1G) = 110904

Table 17. NSGA-II 60 Population, 2 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -401 -54 0.55 132790 21886 39792

2 1 -5 -461 -42 0.56 111650 746 39708

3 1 -5 -464 -45 0.55 120923 10019 18216

4 1 -5 -430 -47 0.56 108870 -2034 -3633

5 1 -5 -455 -47 0.55 127850 16946 30810

6 1 -4 -384 -49 0.56 115536 4632 8271

7 1 -5 -438 -53 0.55 125680 14776 26865

8 1 -4 -380 -51 0.56 114671 3767 6726

9 1 -5 -470 -44 0.56 128185 17281 30858

10 1 -6 -492 -43 0.55 138611 27707 50376

avg 1 -4.9 -438 -48 0.56 122477 11572 20961

Table 18. NSGA-II 60 Population, 3 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -472 -51 0.77 122510 11606 15072

2 1 -5 -435 -47 0.77 128870 17966 23332

3 1 -5 -484 -43 0.78 122620 11716 15020

4 1 -5 -441 -49 0.77 114865 3961 5144

5 1 -5 -424 -49 0.78 120100 9196 11789

6 1 -5 -461 -36 0.76 114135 3231 4251

7 1 -6 -487 -46 0.77 134412 23508 30529

8 1 -5 -464 -38 0.77 121760 10856 14098

9 1 -6 -492 -47 0.75 164429 53525 71366

10 1 -5 -470 -49 0.78 119460 8556 10968

avg 1 -5.2 -463 -46 0.77 126316 15412 20157
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Table 19. NSGA-II 60 Population, 4 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -484 -48 1.00 153322 42418 42418

2 1 -5 -472 -44 0.98 127820 16916 17261

3 1 -5 -455 -46 0.99 130095 19191 19384

4 1 -6 -487 -47 0.98 153517 42613 43482

5 1 -4 -381 -53 0.97 124114 13210 13618

6 1 -6 -487 -62 0.97 181164 70260 72433

7 1 -5 -481 -52 0.99 125060 14156 14299

8 1 -6 -501 -50 0.98 162750 51846 52904

9 1 -6 -498 -46 0.98 156712 45808 46742

10 1 -5 -478 -44 1.00 125300 14396 14396

avg 1 -5.3 -472 -49 0.98 143985 33081 33694

Table 20. NSGA-II 60 Population, 5 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -475 -56 1.25 144675 33771 27016

2 1 -5 -464 -69 1.23 193544 82640 67187

3 1 -5 -475 -58 1.21 139400 28496 23550

4 1 -5 -481 -59 1.20 141895 30991 25826

5 1 -5 -444 -54 1.20 159100 48196 40163

6 1 -5 -452 -61 1.21 174584 63680 52628

7 1 -4 -338 -63 1.21 182212 71308 58932

8 1 -5 -452 -54 1.20 133405 22501 18751

9 1 -5 -478 -42 1.12 126065 15161 13536

10 1 -6 -504 -53 1.22 160272 49368 40465

avg 1 -5.0 -456 -57 1.21 155515 44611 36805
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NSGA-II Algorithm Data for 80 Population.

Average Initial Hypervolume for 80 Population (1G) = 112483

Table 21. NSGA-II 80 Population, 2 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -6 -498 -63 0.75 188244 75761 101015

2 1 -4 -387 -63 0.76 139768 27285 35902

3 1 -5 -418 -53 0.76 121850 9367 12326

4 1 -5 -432 -47 0.75 121350 8867 11823

5 1 -4 -381 -54 0.75 122106 9623 12831

6 1 -5 -407 -51 0.75 117285 4802 6403

7 1 -5 -475 -53 0.74 128947 16464 22249

8 1 -5 -441 -47 0.76 123615 11132 14648

9 1 -5 -432 -49 0.73 114488 2005 2747

10 1 -5 -455 -49 0.75 111475 -1008 -1343

avg 1 -4.9 -433 -53 0.75 128913 16430 21860

Table 22. NSGA-II 80 Population, 3 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -427 -52 1.05 122770 10287 9798

2 1 -5 -338 -52 1.06 149310 36827 34743

3 1 -5 -407 -58 1.06 131470 18987 17913

4 1 -5 -435 -53 1.05 126480 13997 13331

5 1 -5 -472 -48 1.04 139775 27292 26243

6 1 -4 -344 -50 1.04 113996 1513 1455

7 1 -5 -461 -52 1.08 126085 13602 12595

8 1 -5 -407 -50 1.07 121110 8627 8063

9 1 -5 -447 -55 1.05 129690 17207 16388

10 1 -5 -455 -54 1.05 132905 20422 19450

avg 1 -4.9 -419 -52 1.06 129359 16877 15998
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Table 23. NSGA-II 80 Population, 4 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -6 -492 -58 1.35 171216 58733 43506

2 1 -5 -484 -46 1.35 130000 17517 12976

3 1 -5 -455 -54 1.34 129830 17347 12946

4 1 -5 -432 -56 1.39 157520 45037 32401

5 1 -5 -481 -44 1.44 129370 16887 11727

6 1 -6 -492 -45 1.40 173947 61464 43903

7 1 -5 -475 -54 1.37 154835 42352 30914

8 1 -5 -470 -46 1.40 137265 24782 17702

9 1 -5 -441 -58 1.40 138410 25927 18520

10 1 -5 -427 -56 1.42 134165 21682 15269

avg 1 -5.2 -465 -52 1.39 145656 33173 23986

Table 24. NSGA-II 80 Population, 5 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -484 -43 1.61 137730 25247 15682

2 1 -6 -487 -48 1.64 166411 53928 32883

3 1 -5 -401 -57 1.63 160609 48126 29525

4 1 -6 -490 -51 1.64 170695 58212 35495

5 1 -6 -495 -47 1.63 153840 41357 25373

6 1 -4 -375 -63 1.64 171165 58682 35782

7 1 -4 -364 -60 1.61 137777 25294 15711

8 1 -6 -501 -55 1.64 197850 85367 34980

9 1 -6 -495 -61 1.65 181170 68687 41629

10 1 -6 -501 -47 1.62 175512 63029 38907

avg 1 -5.4 -459 -53 1.63 162476 49993 30597
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NSGA-II Algorithm Data for 80 Population.

Average Initial Hypervolume for 80 Population (1G) = 119007

Table 25. NSGA-II 100 Population, 2 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -438 -46 0.93 117205 -1802 -1938

2 1 -5 -427 -47 0.93 108965 -10042 -10798

3 1 -5 -450 -52 0.93 121575 2568 2761

4 1 -5 -470 -47 0.92 121455 2448 2661

5 1 -5 -450 -46 0.94 134885 15878 16891

6 1 -4 -384 -49 0.94 112337 -6670 -7096

7 1 -5 -410 -52 0.93 118755 -252 -271

8 1 -5 -472 -45 0.94 124344 5337 5677

9 1 -5 -470 -53 0.93 148420 29413 31627

10 1 -6 -501 -50 0.94 165060 46053 48992

avg 1 -5 -447 -49 0.93 127300 8293 8851

Table 26. NSGA-II 100 Population, 3 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -481 -48 1.30 137790 18783 14448

2 1 -5 -467 -49 1.33 127795 8788 6607

3 1 -5 -435 -53 1.32 125205 6198 4695

4 1 -5 -441 -49 1.30 128050 9043 6956

5 1 -4 -364 -59 1.30 132164 13157 10121

6 1 -5 -438 -55 1.32 131545 12538 9498

7 1 -5 -475 -41 1.30 132935 13928 10714

8 1 -5 -410 -54 1.31 130020 11013 8407

9 1 -5 -450 -56 1.32 163974 44967 34066

10 1 -5 -404 -55 1.32 128735 9728 7370

avg 1 -4.9 -437 -52 1.31 133821 14814 11288
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Table 27. NSGA-II 100 Population, 4 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -452 -52 1.73 124515 5508 3184

2 1 -5 -464 -58 1.68 167226 48219 28702

3 1 -5 -464 -49 1.72 151700 32693 19007

4 1 -5 -415 -59 1.71 171650 52643 30785

5 1 -5 -472 -52 1.70 161056 42049 24735

6 1 -5 -424 -60 1.73 175808 56801 32833

7 1 -5 -461 -56 1.70 158801 39794 23408

8 1 -5 -432 -64 1.67 149125 30118 18035

9 1 -6 -490 -49 1.67 184055 65048 38951

10 1 -6 -495 -59 1.69 175230 56223 33268

avg 1 -5.2 -457 -56 1.70 161917 42909 25291

Table 28. NSGA-II 100 Population, 5 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -6 -515 -63 2.06 194670 75663 36730

2 1 -6 -504 -51 2.09 181410 62403 29858

3 1 -6 -490 -52 2.06 167886 48879 23728

4 1 -5 -481 -59 2.05 175228 56221 27425

5 1 -6 -510 -50 2.10 211495 92488 44042

6 1 -6 -495 -57 2.05 169290 50283 24528

7 1 -5 -452 -58 2.07 164400 45393 21929

8 1 -6 -498 -51 2.07 157550 38543 18620

9 1 -6 -507 -60 2.05 191286 72279 35258

10 1 -6 -512 -48 2.03 183744 64737 31890

avg 1 -5.8 -496 -55 2.06 179696 60689 29401
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2.2 Data for SPEA2 Algorithm

SPEA2 Algorithm Data for 20 Population.

Average Initial Hypervolume for 20 Population (1G) = 105714

Table 29. SPEA2 20 Population, 2 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -464 -36 0.15 104995 -719 -4795

2 1 -5 -435 -45 0.15 100170 -5544 -36962

3 1 -5 -458 -37 0.14 114160 8446 60326

4 1 -5 -450 -38 0.15 97830 -7884 -52562

5 1 -4 -361 -54 0.15 115834 10120 67465

6 1 -5 -464 -41 0.15 130520 24806 165371

7 1 -5 -450 -40 0.15 106770 1056 7038

8 1 -5 -450 -40 0.15 111580 5866 39105

9 1 -5 -461 -34 0.15 114115 8401 56005

10 1 -4 -378 -48 0.14 108489 2775 19819

avg 1 -4.8 -437 -41 0.15 110446 4732 32081

Table 30. SPEA2 20 Population, 3 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -464 -39 0.18 106510 796 4421

2 1 -5 -452 -42 0.18 101670 -4044 -22468

3 1 -5 -418 -54 0.19 120375 14661 77162

4 1 -5 -481 -43 0.19 119165 13451 70794

5 1 -5 -470 -41 0.18 114910 9196 51087

6 1 -5 -461 -39 0.18 112475 6761 37559

7 1 -5 -458 -39 0.18 102885 -2829 -15718

8 1 -5 -458 -41 0.19 100605 -5109 -26891

9 1 -5 -472 -41 0.18 121575 15861 88115

10 1 -5 -461 -35 0.19 116430 10716 56398

avg 1 -5.0 -460 -41 0.18 111660 5946 32046
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Table 31. SPEA2 20 Population, 4 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -467 -42 0.22 116340 10626 48299

2 1 -5 -467 -39 0.22 111195 5481 24912

3 1 -5 -432 -53 0.22 119255 13541 61549

4 1 -5 -441 -60 0.23 137320 31606 137416

5 1 -5 -458 -41 0.22 117340 11626 52844

6 1 -5 -470 -43 0.22 121190 15476 70344

7 1 -4 -350 -49 0.23 108384 2670 11607

8 1 -5 -478 -44 0.22 113635 7921 36003

9 1 -5 -413 -58 0.22 133900 28186 128117

10 1 -4 -330 -57 0.23 125700 19986 86894

avg 1 -4.8 -431 -49 0.22 120426 14712 65799

Table 32. SPEA2 20 Population, 5 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -404 -52 0.26 117005 11291 43426

2 1 -5 -470 -49 0.26 117895 12181 46849

3 1 -6 -487 -43 0.25 141836 36122 144487

4 1 -5 -484 -46 0.26 122345 16631 63964

5 1 -5 -481 -55 0.25 144660 38946 155783

6 1 -5 -472 -42 0.26 135975 30261 116387

7 1 -5 -464 -43 0.26 121335 15621 60080

8 1 -5 -478 -50 0.25 128685 22971 91883

9 1 -5 -404 -58 0.26 134565 28851 110964

10 1 -6 -487 -43 0.26 149576 43862 168699

avg 1 -5.2 -463 -48 0.26 131388 25673 100252
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SPEA2 Algorithm Data for 40 Population.

Average Initial Hypervolume for 40 Population (1G) = 112646

Table 33. SPEA2 40 Population, 2 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -467 -40 0.30 111240 -14065 -4685

2 1 -5 -481 -50 0.30 120250 7604 25348

3 1 -5 -461 -42 0.30 105600 -7044 -23485

4 1 -4 -338 -48 0.30 105791 -6855 -22848

5 1 -5 -475 -35 0.30 114035 1389 4632

6 1 -5 -444 -39 0.30 111138 -1508 -5025

7 1 -5 -435 -54 0.30 121155 8509 28365

8 1 -5 -447 -41 0.30 110810 -1836 -6118

9 1 -4 -393 -47 0.30 104707 -7939 -26462

10 1 -5 -398 -56 0.30 125880 13234 44115

avg 1 -4.8 -434 -45 0.30 113061 415 1384

Table 34. SPEA2 40 Population, 3 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -472 -44 0.37 112715 69 188

2 1 -5 -481 -46 0.37 119585 6939 18755

3 1 -5 -478 -46 0.38 130670 18024 47433

4 1 -5 -467 -38 0.38 111780 -866 -2278

5 1 -5 -467 -41 0.37 113260 614 1661

6 1 -6 -487 -38 0.38 135936 23290 61291

7 1 -5 -472 -44 0.38 115230 2584 6801

8 1 -5 -461 -35 0.37 123905 11259 30431

9 1 -5 -395 -51 0.37 119560 6914 18688

10 1 -5 -481 -46 0.37 126617 13971.5 37761

avg 1 -5.1 -466 -43 0.37 120926 8280 22073
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Table 35. SPEA2 40 Population, 4 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -4 -324 -61 0.46 129675 17029 37021

2 1 -5 -472 -39 0.46 114805 2159 4695

3 1 -5 -478 -43 0.46 125530 12884 28010

4 1 -6 -498 -55 0.45 180475 67829 150732

5 1 -5 -478 -42 0.45 121210 8564 19032

6 1 -5 -438 -53 0.46 124190 11544 25097

7 1 -6 -512 -68 0.45 208896 96250 213890

8 1 -5 -472 -42 0.45 115070 2424 5388

9 1 -5 -455 -52 0.45 126040 13394 29766

10 1 -6 -498 -55 0.45 164340 51694 114877

avg 1 -5.2 -463 -51 0.45 141023 28378 62851

Table 36. SPEA2 40 Population, 5 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -6 -495 -66 0.53 196020 83374 157310

2 1 -6 -487 -50 0.54 154920 42274 78286

3 1 -6 -495 -51 0.55 167865 55219 100399

4 1 -5 -464 -39 0.54 121820 9174 16990

5 1 -6 -490 -53 0.54 155820 43174 79953

6 1 -5 -475 -55 0.53 132845 20199 38112

7 1 -6 -492 -56 0.53 165312 52666 99371

8 1 -6 -492 -47 0.54 161135 48489 89795

9 1 -6 -487 -44 0.54 155858 43212 80023

10 1 -5 -484 -45 0.53 134490 21844 41216

avg 1 -5.7 -486 -51 0.54 154609 41963 78146
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SPEA2 Algorithm Data for 60 Population.

Average Initial Hypervolume for 60 Population (1G) = 109359

Table 37. SPEA2 60 Population, 2 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -481 -47 0.47 123715 14356 30546

2 1 -5 -461 -38 0.46 109985 626 1362

3 1 -5 -458 -43 0.47 118655 9296 19780

4 1 -6 -492 -55 0.46 162360 53001 115221

5 1 -5 -447 -47 0.46 110075 716 1558

6 1 -5 -467 -44 0.47 127818 18459 39276

7 1 -5 -478 -45 0.46 129530 20171 43851

8 1 -5 -464 -40 0.47 117120 7761 16514

9 1 -5 -470 -41 0.46 109490 131 286

10 1 -5 -467 -40 0.45 127665 18306 40681

avg 1 -5.1 -469 -44 0.46 123641 14283 30907

Table 38. SPEA2 60 Population, 3 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -4 -353 -52 0.58 116203 6844 11801

2 1 -5 -484 -43 0.59 115860 6501 11019

3 1 -5 -475 -46 0.58 141217 31858 54928

4 1 -5 -472 -41 0.59 121170 11811 20019

5 1 -5 -475 -52 0.58 124160 14801 25520

6 1 -5 -472 -39 0.59 126745 17386 29469

7 1 -5 -470 -43 0.58 121270 11911 20537

8 1 -5 -484 -48 0.58 132085 22726 39184

9 1 -5 -464 -46 0.58 120080 10721 18485

10 1 -5 -418 -57 0.59 132220 22861 38748

avg 1 -4.9 -457 -47 0.58 125101 15742 26971
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Table 39. SPEA2 60 Population, 4 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -478 -37 0.68 132990 23631 34752

2 1 -6 -495 -53 0.69 166010 56651 82104

3 1 -6 -495 -47 0.68 165782 56423 82976

4 1 -5 -478 -38 0.69 137950 28591 41437

5 1 -6 -504 -51 0.69 162990 53631 77727

6 1 -5 -461 -62 0.69 143495 34136 49473

7 1 -5 -484 -52 0.69 125840 16481 23886

8 1 -6 -492 -43 0.69 151670 42311 61321

9 1 -5 -481 -42 0.68 121905 12546 18451

10 1 -6 -487 -51 0.68 155257 45898 67498

avg 1 -5.5 -486 -48 0.69 146389 37030 53962

Table 40. SPEA2 60 Population, 5 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -484 -44 0.81 144150 34791 42952

2 1 -6 -487 -45 0.81 148764 39405 48649

3 1 -6 -487 -48 0.81 166726 57367 70824

4 1 -6 -492 -54 0.81 175560 66201 81730

5 1 -6 -498 -58 0.81 182070 72711 89767

6 1 -5 -441 -75 0.81 204515 95156 117477

7 1 -5 -432 -66 0.81 191160 81801 100990

8 1 -6 -490 -53 0.81 155820 46461 57360

9 1 -6 -507 -52 0.81 195144 85785 105908

10 1 -6 -490 -50 0.81 156500 47141 58199

avg 1 -5.7 -481 -55 0.81 172041 62862 77386
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SPEA2 Algorithm Data for 80 Population.

Average Initial Hypervolume for 80 Population (1G) = 114778

Table 41. SPEA2 80 Population, 2 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -484 -54 0.62 130680 15902 25648

2 1 -5 -461 -45 0.63 122915 8137 12916

3 1 -4 -347 -54 0.63 120054 5276 8374

4 1 -5 -467 -42 0.62 120570 5792 9342

5 1 -5 -455 -50 0.63 118455 3677 5836

6 1 -5 -467 -45 0.62 122240 7462 12035

7 1 -4 -378 -58 0.62 128757 13979 22547

8 1 -5 -461 -44 0.62 111985 -2793 -4505

9 1 -5 -404 -53 0.62 118370 3592 5793

10 1 -5 -464 -37 0.63 113820 -958 -1521

avg 1 -4.8 -439 -48 0.62 120785 6007 9647

Table 42. SPEA2 80 Population, 3 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -484 -40 0.80 141690 26912 33640

2 1 -6 -490 -50 0.80 153705 38927 48659

3 1 -5 -478 -48 0.79 124805 10027 12692

4 1 -5 -470 -44 0.80 125025 10247 12809

5 1 -5 -478 -44 0.80 130575 15797 19746

6 1 -5 -472 -38 0.79 127370 12592 15939

7 1 -5 -481 -44 0.78 119670 4892 6272

8 1 -5 -470 -45 0.79 121440 6662 8433

9 1 -5 -467 -45 0.79 123300 8522 10787

10 1 -6 -487 -54 0.79 157788 43010 54443

avg 1 -5.2 -478 -45 0.79 132537 17759 22342
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Table 43. SPEA2 80 Population, 4 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -447 -62 0.94 148330 33552 35694

2 1 -6 -487 -52 0.95 160204 45426 47817

3 1 -5 -455 -56 0.94 132455 17677 18805

4 1 -5 -484 -61 0.97 147620 32842 33858

5 1 -5 -475 -38 0.95 123215 8437 8881

6 1 -6 -498 -49 0.93 165767 50989 54827

7 1 -5 -478 -43 0.94 125085 10307 10965

8 1 -6 -492 -42 0.93 168449 53671 57711

9 1 -5 -450 -67 0.94 157095 42317 145018

10 1 -6 -498 -58 0.93 193304 78526 84436

avg 1 -5.4 -476 -53 0.94 152152 37374 39801

Table 44. SPEA2 80 Population, 5 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -6 -498 -54 1.09 179532 64754 59407

2 1 -6 -507 -52 1.09 176814 62036 56914

3 1 -4 -358 -53 1.07 126104 11326 10585

4 1 -5 -363 -67 1.08 187890 73112 67696

5 1 -6 -492 -49 1.08 160068 45290 41935

6 1 -6 -492 -47 1.08 148144 33366 30894

7 1 -6 -490 -58 1.07 170520 55742 52095

8 1 -6 -487 -48 1.09 152006 37228 34154

9 1 -6 -507 -62 1.08 188604 73826 168357

10 1 -5 -484 -55 1.08 135065 20287 18784

avg 1 -5.6 -468 -55 1.08 162475 47697 44082
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SPEA2 Algorithm Data for 80 Population.

Average Initial Hypervolume for 80 Population (1G) = 118819

Table 45. SPEA2 100 Population, 2 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -432 -53 0.77 121820 3001 3897

2 1 -5 -484 -44 0.77 124145 5326 6917

3 1 -5 -478 -42 0.77 117345 -1474 -1915

4 1 -5 -467 -47 0.76 114385 -4434 -5834

5 1 -5 -484 -46 0.77 124310 5491 7131

6 1 -5 -481 -46 0.77 119010 191 248

7 1 -5 -467 -43 0.77 127885 9066 11774

8 1 -5 -464 -39 0.78 123135 4316 5533

9 1 -5 -467 -44 0.77 117398 -1421 -1846

10 1 -5 -472 -44 0.77 119090 271 352

avg 1 -5.0 -470 -45 0.77 120852 2033 2626

Table 46. SPEA2 100 Population, 3 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -6 -490 -48 0.95 153285 34466 36280

2 1 -5 -401 -51 0.97 120576 1757 1811

3 1 -5 -464 -45 0.98 125830 7011 7154

4 1 -5 -481 -46 0.95 121374 2555 2689

5 1 -4 -324 -56 0.97 124223 5404 5571

6 1 -6 -490 -57 0.96 467580 48761 50793

7 1 -5 -472 -52 0.95 122720 3901 4106

8 1 -6 -495 -59 0.97 175230 56411 58155

9 1 -6 -487 -52 0.97 151944 33125 34149

10 1 -5 -472 -52 0.96 129425 10606 11048

avg 1 -5.3 -458 -52 0.96 139219 20400 21176
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Table 47. SPEA2 100 Population, 4 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -481 -44 1.18 143270 24451 20721

2 1 -6 -495 -47 1.18 168035 49216 41708

3 1 -6 -498 -49 1.19 164232 45413 38162

4 1 -6 -490 -43 1.18 168550 49731 42145

5 1 -6 -501 -52 1.18 169542 50723 42985

6 1 -6 -490 -46 1.19 168970 50151 42144

7 1 -6 -492 -48 1.19 161143 42324 35566

8 1 -5 -475 -49 1.18 131630 12811 10857

9 1 -6 -492 -50 1.19 159225 40406 33954

10 1 -5 -481 -49 1.21 134085 15266 12616

avg 1 -5.7 -490 -48 1.19 156868 38049 32086

Table 48. SPEA2 100 Population, 5 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -6 -498 -55 1.39 185805 66986 48191

2 1 -6 -492 -65 1.40 193680 74861 53472

3 1 -6 -501 -50 1.40 167118 48299 34499

4 1 -6 -507 -50 1.40 184770 65951 47108

5 1 -6 -524 -57 1.38 183358 64539 46767

6 1 -6 -495 -45 1.38 178089 59270 42949

7 1 -6 -501 -58 1.41 177300 58481 41476

8 1 -6 -504 -54 1.38 163296 44477 32230

9 1 -6 -504 -49 1.41 172656 53837 38182

10 1 -6 -504 -66 1.41 199584 80765 57280

avg 1 -6.0 -503 -55 1.40 180566 61746 44215
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2.3 Data for NSPSO Algorithm

NSPSO Algorithm Data for 20 Population.

Average Initial Hypervolume for 20 Population (1G) = 109554

Table 49. NSPSO 20 Population, 2 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -458 -44 0.15 141220 31666 211109

2 1 -5 -415 -54 0.15 126426 16872 112483

3 1 -5 -452 -40 0.15 147034 37480 249869

4 1 -5 -458 -38 0.15 117980 8426 56776

5 1 -5 -447 -40 0.15 108015 -1539 -10257

6 1 -5 -447 -40 0.15 110178 624 4163

7 1 -5 -432 -45 0.15 119989 10435 69569

8 1 -5 -450 -38 0.15 147005 374514 249676

9 1 -5 -430 -67 0.15 148890 39336 262243

10 1 -5 -423 -43 0.15 163658 54104 360696

avg 1 -5.0 -401 -45 0.15 133039 23486 156573

Table 50. NSPSO 20 Population, 3 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -4 -313 -71 0.19 135544 25990 136792

2 1 -5 -452 -38 0.19 166430 56876 299349

3 1 -5 -438 -66 0.18 189800 80246 445813

4 1 -5 -427 -65 0.19 147810 83256 201349

5 1 -5 -435 -42 0.19 181838 72284 380444

6 1 -5 -435 -36 0.19 147575 38021 200113

7 1 -5 -447 -35 0.19 141876 32322 170118

8 1 -6 -490 -48 0.19 160065 50511 265849

9 1 -5 -438 -34 0.19 162587 53033 279123

10 1 -5 -458 -45 0.19 183665 74111 390060

avg 1 -5.0 -433 -48 0.19 161719 52165 276901

165



Table 51. NSPSO 20 Population, 4 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -4 -381 -55 0.22 204674 94713 430515

2 1 -5 -464 -39 0.22 245750 138021 627370

3 1 -5 -441 -39 0.23 207520 97966 425941

4 1 -5 -475 -39 0.22 205854 96300 437729

5 1 -5 -467 -43 0.22 205682 96128 436947

6 1 -5 -452 -43 0.23 225029 115475 502067

7 1 -5 -438 -40 0.23 194428 84874 369019

8 1 -5 -455 -49 0.23 138552 28998 126080

9 1 -5 -455 -42 0.23 244395 134841 586267

10 1 -5 -421 -44 0.22 203797 94243 428379

avg 1 -4.9 -445 -43 0.23 207710 98156 437031

Table 52. NSPSO 20 Population, 5 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -413 -97 0.26 218155 108601 417698

2 1 -5 -452 -38 0.26 578660 469106 1804255

3 1 -5 -447 -40 0.26 259870 150316 578140

4 1 -5 -450 -40 0.26 204249 94695 364213

5 1 -5 -421 -52 0.26 159920 50366 193717

6 1 -5 -438 -44 0.26 242656 133102 511932

7 1 -5 -438 -37 0.26 191349 81795 314598

8 1 -4 -310 -107 0.26 282680 173126 665871

9 1 -5 -447 -93 0.26 210825 101271 389505

10 1 -5 -438 -39 0.26 223432 113878 437994

avg 1 -4.9 -425 -59 0.26 257180 147626 567792
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NSPSO Algorithm Data for 40 Population.

Average Initial Hypervolume for 40 Population (1G) = 116479

Table 53. NSPSO 40 Population, 2 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -464 -49 0.30 119364 2885 9618

2 1 -5 -432 -58 0.30 194984 78505 261684

3 1 -5 -467 -53 0.30 126619 10140 33801

4 1 -5 -447 -38 0.30 124780 8301 27671

5 1 -5 -464 -38 0.30 146947 30468 101561

6 1 -5 -432 -46 0.30 142792 26313 87711

7 1 -5 -441 -46 0.30 169960 53481 178271

8 1 -5 -435 -48 0.30 149255 327766 109254

9 1 -5 -395 -61 0.30 137850 21371 71238

10 1 -5 -430 -46 0.30 151911 35432 118108

avg 1 -5.0 -441 -48 0.30 146446 29968 99892

Table 54. NSPSO 40 Population, 3 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -452 -44 0.38 164566 48087 126546

2 1 -5 -450 -39 0.37 204384 87905 237582

3 1 -5 -447 -42 0.38 190670 74191 195240

4 1 -5 -452 -131 0.38 336888 220409 280024

5 1 -5 -461 -41 0.38 177262 60783 159956

6 1 -5 -438 -45 0.38 140363 23884 62853

7 1 -5 -447 -37 0.38 190328 73849 194340

8 1 -5 -421 -46 0.38 169623 531446 139853

9 1 -5 -455 -79 0.38 210770 94291 248135

10 1 -5 -447 -39 0.38 151250 34771 91503

avg 1 -5.0 -447 -54 0.38 193610 77132 203603
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Table 55. NSPSO 40 Population, 4 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -407 -50 0.45 203373 86894 193098

2 1 -5 -444 -39 0.45 222603 106124 235832

3 1 -5 -447 -76 0.46 210055 93576 203427

4 1 -5 -461 -41 0.46 163890 474119 103068

5 1 -5 -467 -46 0.45 644080 527601 1172447

6 1 -5 -455 -47 0.45 234464 117985 262190

7 1 -5 -464 -41 0.45 418131 301652 670338

8 1 -5 -438 -47 0.45 235789 119310 265134

9 1 -5 -438 -68 0.45 218039 101560 225690

10 1 -5 -458 -37 0.45 162000 45521 101158

avg 1 -5.0 -448 -49 0.45 271242 154764 343238

Table 56. NSPSO 40 Population, 5 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -455 -39 0.52 286633 170154 327220

2 1 -4 -378 -80 0.52 193030 76551 147214

3 1 -5 -464 -47 0.52 250393 133914 257528

4 1 -5 -484 -45 0.52 670360 553881 1065156

5 1 -5 -455 -94 0.52 490235 373756 718762

6 1 -5 -447 -48 0.52 207438 90959 174922

7 1 -5 -470 -40 0.53 629545 513066 968050

8 1 -5 -455 -46 0.52 262071 145592 279985

9 1 -5 -418 -85 0.52 221457 104978 201881

10 1 -5 -464 -45 0.52 769010 652531 1254868

avg 1 -4.9 -449 -57 0.52 398017 281539 539559
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NSPSO Algorithm Data for 60 Population.

Average Initial Hypervolume for 60 Population (1G) = 124322

Table 57. NSPSO 60 Population, 2 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -452 -40 0.46 167485 43163 77077

2 1 -5 -455 -35 0.46 143869 19547 42493

3 1 -5 -484 -46 0.46 141364 17042 37048

4 1 -5 -413 -56 0.47 164590 40268 85677

5 1 -5 -410 -46 0.46 145710 21388 46496

6 1 -4 -358 -57 0.46 154444 30122 65483

7 1 -5 -452 -40 0.46 152802 28480 61913

8 1 -5 -450 -37 0.46 160783 36461 79263

9 1 -5 -455 -45 0.46 143232 18910 41109

10 1 -5 -452 -47 0.46 132448 8126 17665

avg 1 -4.9 -438 -45 0.46 150673 26351 57098

Table 58. NSPSO 60 Population, 3 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -470 -43 0.57 559745 435423 763900

2 1 -5 -447 -82 0.56 191520 67198 119996

3 1 -5 -452 -41 0.57 197630 73308 128611

4 1 -4 -370 -93 0.57 238696 114374 200656

5 1 -5 -455 -83 0.57 198893 74571 130826

6 1 -5 -450 -44 0.57 350500 226178 396803

7 1 -5 -447 -50 0.57 199974 75652 132723

8 1 -5 -467 -43 0.57 167244 42922 75302

9 1 -5 -458 -41 0.57 164423 40101 70353

10 1 -5 -438 -84 0.57 249870 125548 220260

avg 1 -4.9 -445 -60 0.57 251850 127528 223943
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Table 59. NSPSO 60 Population, 4 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -455 -46 0.69 421409 297087 430561

2 1 -4 -301 -120 0.70 303138 178816 255451

3 1 -5 -455 -62 0.69 216815 92493 134048

4 0 -5 -403 -128 0.69 535180 410858 595446

5 1 -5 -455 -36 0.69 245782 121460 176029

6 1 -5 -464 -47 0.68 190204 65882 96885

7 1 -5 -452 -43 0.68 206048 81726 120185

8 0 -5 -429 -120 0.68 530590 406268 597453

9 1 -5 -444 -55 0.68 260449 136127 200187

10 1 -5 -461 -49 0.68 230018 105696 155435

avg 0.8 -4.9 -432 -71 0.69 313963 189641 276168

Table 60. NSPSO 60 Population, 5 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 0 -5 -443 -137 0.80 890280 765958 957448

2 0 -5 -430 -197 0.81 893950 769628 950158

3 1 -5 -464 -42 0.81 584933 460611 568656

4 1 -4 -353 -84 0.80 249726 125404 156755

5 1 -5 -461 -43 0.80 314880 190558 238198

6 1 -5 -481 -98 0.80 286014 161692 202115

7 1 -5 -464 -38 0.80 245582 121260 151575

8 1 -5 -470 -71 0.80 552325 428003 535004

9 1 -4 -318 -136 0.81 592323 468001 577779

10 0 -5 -428 -146 0.80 644025 519703 649629

avg 0.7 -4.8 -431 -99 0.80 525404 401082 498732
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NSPSO Algorithm Data for 80 Population.

Average Initial Hypervolume for 80 Population (1G) = 123996

Table 61. NSPSO 80 Population, 2 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -398 -52 0.62 146366 22370 36080

2 1 -5 -432 -46 0.62 156570 32574 52538

3 1 -5 -447 -42 0.62 173935 49939 80546

4 1 -5 -418 -63 0.62 144915 20919 33740

5 1 -5 -478 -43 0.63 149293 25297 40153

6 1 -5 -447 -42 0.62 133192 9196 14832

7 1 -5 -481 -50 0.62 213064 89068 143657

8 1 -5 -472 -61 0.62 143960 19964 32199

9 1 -5 -427 -44 0.62 149530 25534 41183

10 1 -5 -415 -54 0.62 141801 17805 28717

avg 1 -5.0 -442 -50 0.62 155263 31266 50365

Table 62. NSPSO 80 Population, 3 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -478 -47 0.77 192955 68959 89557

2 1 -5 -455 -50 0.76 213847 89851 118224

3 1 -5 -455 -43 0.76 209205 85209 112117

4 1 -5 -470 -44 0.77 245793 121797 158177

5 1 -5 -455 -52 0.77 188499 64503 83770

6 1 -4 -344 -91 0.77 203476 79480 103220

7 1 -5 -472 -43 0.77 435517 311521 404572

8 1 -5 -455 -95 0.76 222221 98225 129243

9 1 -5 -464 -40 0.76 160354 36358 478389

10 1 -5 -461 -78 0.76 180855 56859 74814

avg 1 -4.9 -451 -58 0.77 225272 101276 132153
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Table 63. NSPSO 80 Population, 4 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -450 -43 0.92 249986 125990 136945

2 1 -5 -415 -64 0.93 182795 58799 63224

3 1 -5 -484 -69 0.92 244035 120039 130477

4 1 -4 -321 -136 0.93 311386 187390 201494

5 1 -5 -455 -43 0.93 478237 354241 380904

6 1 -5 -452 -51 0.93 469961 345945 372005

7 1 -4 -335 -92 0.92 397459 273463 297242

8 1 -5 -458 -46 0.92 253239 129243 140481

9 0 -4 -317 -135 0.93 555592 431596 464081

10 1 -5 -458 -47 0.92 310789 186793 203035

avg 0.9 -4.7 -415 -73 0.93 345348 221352 238989

Table 64. NSPSO 80 Population, 5 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -6 -498 -47 1.09 751468 627472 575662

2 1 -5 -438 -100 1.10 284532 160536 145941

3 1 -5 -461 -49 1.09 261902 137906 126519

4 1 -5 -484 -73 1.10 276066 152070 138245

5 1 -5 -470 -40 1.09 397780 273784 251178

6 1 -5 -461 -85 1.10 209020 85024 77294

7 0 -5 -422 -178 1.10 866485 742489 674990

8 1 -5 -455 -84 1.09 642340 518344 475545

9 1 -4 -341 -112 1.09 503312 379316 347996

10 1 -5 -390 -92 1.10 286631 162635 147850

avg 0.9 -5.0 -442 -86 1.10 447954 323957 296122
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NSPSO Algorithm Data for 100 Population.

Average Initial Hypervolume for 100 Population (1G) = 123724

Table 65. NSPSO 100 Population, 2 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -438 -55 0.78 135498 11774 15095

2 1 -5 -458 -43 0.78 205598 81874 104967

3 1 -4 -333 -67 0.79 141490 17766 22489

4 1 -5 -415 -49 0.79 159528 35804 45322

5 1 -5 -421 -50 0.80 195104 71380 89226

6 1 -5 -458 -48 0.79 158427 34703 43928

7 1 -5 -407 -53 0.78 154015 30291 38835

8 1 -5 -435 -49 0.78 200157 76433 97992

9 1 -5 -467 -40 0.79 160961 37237 47136

10 1 -5 -464 -43 0.78 149820 26096 33457

avg 1 -4.9 -430 -50 0.79 166060 42336 53845

Table 66. NSPSO 100 Population, 3 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -481 -45 0.97 602470 478746 493553

2 1 -5 -470 -50 0.97 268878 145154 149644

3 1 -5 -452 -51 0.98 216072 92348 94233

4 0 -5 -445 -147 0.98 711510 587786 599782

5 1 -5 -452 -56 0.98 204359 80635 82281

6 1 -5 -461 -42 0.97 192852 69128 71266

7 1 -4 -358 -100 0.97 266894 143170 147598

8 1 -4 -307 -92 0.97 263127 139403 143715

9 1 -5 -430 -51 0.97 166535 42811 44135

10 1 -4 -318 -112 0.97 241541 117817 121461

avg 0.9 -4.7 -417 -75 0.97 313424 189700 194767
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Table 67. NSPSO 100 Population, 4 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -413 -118 1.17 574872 451148 385597

2 1 -5 -475 -78 1.17 671630 547906 468296

3 1 -5 -450 -107 1.17 274876 151152 129190

4 0 -5 -466 -134 1.17 646220 522496 446578

5 1 -5 -464 -40 1.17 660895 537171 459121

6 1 -5 -461 -48 1.17 565975 442251 377993

7 1 -4 -293 -123 1.17 251849 128125 109509

8 1 -5 -432 -72 1.16 247128 123404 106383

9 1 -5 -472 -43 1.17 545855 422131 360796

10 0 -5 -454 -149 1.17 682760 559036 477809

avg 0.8 -4.9 -438 -91 1.17 512206 388482 332127

Table 68. NSPSO 100 Population, 5 Generations

Run # obj1 obj2 obj3 obj4 time(s) HV HV-1G (HV-1G)/T

1 1 -5 -464 -54 1.37 230114 106390 77657

2 0 -5 -445 -145 1.37 748880 625156 456319

3 0 -5 -466 -137 1.38 687340 563616 408418

4 1 -5 -455 -108 1.37 619980 496256 362231

5 0 -5 -457 -150 1.37 985370 861646 628939

6 1 -5 -481 -42 1.38 645501 521777 378100

7 0 -5 -429 -131 1.37 662890 539166 393552

8 1 -5 -458 -45 1.37 250085 126361 92235

9 1 -5 -452 -44 1.38 284273 160549 116340

10 0 -4 -295 -151 1.38 657199 533475 386576

avg 0.5 -4.9 -440 -101 1.37 577163 453440 330036
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Appendix C. Raw Data for Online Simulation

This appendix provides the raw win/loss rate and other statistical data acquired

during simulations between various tactical decision making methods on the Spring

RTS engine. For each series of battles the title is in the format “Online Simulation

Results for X Tactic vs Y Tactic”. The “X” tactic begins the battle at the start of

the map, and the “Y” tactic begins on the bottom. There are be 10 battles between

each type of tactic for each method from each direction.

3.1 Data for MOEA Tactic Starting From Top of Map

Table 69. Online Simulation Results for MOEA Tactic vs Default Tactic

Win/Lose Battle Duration # Units Remaining Average Remaining HP

Win 0:32 12 758.17

Win 0:40 5 952.8

Win 0:35 7 793.29

Lose 0:28 15 720.67

Win 0:33 5 339.8

Lose 0:37 9 842.78

Win 0:29 12 1384.08

Win 0:32 10 1150

Win 0:37 8 1275.38

Lose 0:34 12 842.58
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Table 70. Online Simulation Results for MOEA Tactic vs Proximity Tactic

Win/Lose Battle Duration # Units Remaining Average Remaining HP

Win 0:36 5 664.4

Win 0:28 17 1166.65

Win 0:33 12 920.42

Lose 0:33 13 912.77

Lose 0:46 3 672.33

Win 0:40 4 827.25

Win 0:26 15 1118.13

Lose 0:44 3 669

Lose 0:42 13 783.69

Win 0:45 7 918

Table 71. Online Simulation Results for MOEA Tactic vs Weak Tactic

Win/Lose Battle Duration # Units Remaining Average Remaining HP

Win 0:43 6 1332.5

Win 0:33 8 1105.88

Win 0:33 10 1299.7

Win 0:38 11 1465

Win 0:34 8 1329.63

Win 0:42 5 1150

Win 0:26 15 1141.6

Win 0:37 5 1247.8

Win 0:30 11 1391.73

Win 0:38 7 1396.43
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3.2 Data for Default Tactic Starting From Top of Map

Table 72. Online Simulation Results for Default Tactic vs MOEA Tactic

Win/Lose Battle Duration # Units Remaining Average Remaining HP

Lose 0:28 8 923.63

Win 0:42 4 903.5

Lose 0:45 4 1008

Lose 0:33 7 778.43

Lose 0:33 8 1144.13

Lose 0:40 5 811.2

Lose 0:35 8 1123.75

Lose 0:29 12 1609.08

Lose 0:26 12 1329.92

Lose 0:25 19 1440.26
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Table 73. Online Simulation Results for Default Tactic vs Proximity Tactic

Win/Lose Battle Duration # Units Remaining Average Remaining HP

Lose 0:30 10 1096.3

Win 0:37 5 982.6

Win 1:03 2 1007

Lose 0:49 3 418.33

Lose 0:40 5 1251.4

Win 0:56 2 210

Win 0:52 4 894.75

Lose 0:36 8 1010.25

Win 0:41 7 1229.43

Lose 0:42 5 1281

Table 74. Online Simulation Results for Default Tactic vs Weak Tactic

Win/Lose Battle Duration # Units Remaining Average Remaining HP

Win 0:37 7 1268.57

Lose 0:45 7 1215.71

Win 0:37 7 1474.14

Win 0:31 9 1354.89

Win 0:43 4 1401.25

Win 0:45 3 1039

Win 0:41 5 1314.6

Win 0:36 7 1164

Win 0:35 7 1465

Win 0:48 4 1391.25

178



3.3 Data for Proximity Tactic Starting from Top of Map

Table 75. Online Simulation Results for Proximity Tactic vs Default Tactic

Win/Lose Battle Duration # Units Remaining Average Remaining HP

Lose 0:38 11 978.36

Lose 0:46 7 768.86

Lose 0:44 4 653.25

Lose 0:41 5 1112.4

Win 0:42 5 822.2

Lose 0:36 8 1118.38

Lose 0:34 12 1262.42

Lose 0:38 10 1073.2

Win 0:34 7 1184.71

Win 0:45 4 1077
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Table 76. Online Simulation Results for Proximity Tactic vs MOEA Tactic

Win/Lose Battle Duration # Units Remaining Average Remaining HP

Lose 0:49 7 1213.14

Lose 0:25 14 1066.93

Lose 0:31 11 652.55

Lose 0:34 11 840.82

Lose 1:15 1 49

Win 0:39 4 565

Lose 0:50 5 1448.2

Lose 0:41 8 937.13

Win 0:52 5 815.8

Lose 0:42 7 1210.29

Table 77. Online Simulation Results for Proximity Tactic vs Weak Tactic

Win/Lose Battle Duration # Units Remaining Average Remaining HP

Win 0:46 6 1408.67

Win 0:38 9 1162.11

Win 0.34 10 1522.6

Win 0:49 3 790.33

Win 0:47 3 898.33

Win 0:44 7 1428.71

Win 0:45 8 1090.25

Win 0:44 9 1356.56

Win 0:31 15 1391.13

Win 0:43 8 978.38
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3.4 Data for Weak Tactic Starting from Top of Map

Table 78. Online Simulation Results for Weak Tactic vs Default Tactic

Win/Lose Battle Duration # Units Remaining Average Remaining HP

Lose 0:37 9 1257.78

Lose 0:39 10 1419.4

Lose 0:35 6 1042.5

Lose 0:36 6 936.67

Lose 0:30 9 1244.22

Lose 0:36 9 1296.67

Lose 0:38 7 1373.14

Lose 0:35 5 1338.2

Win 0:39 7 996.86

Lose 0:34 7 999.57
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Table 79. Online Simulation Results for Weak Tactic vs Proximity Tactic

Win/Lose Battle Duration # Units Remaining Average Remaining HP

Lose 0:26 15 993.733

Lose 0:34 12 1486.83

Lose 0:44 9 1380.89

Lose 0:34 11 1501.09

Lose 0:55 3 1168.67

Lose 0:43 11 1386

Lose 0:38 12 1353.67

Lose 0:41 11 1200.45

Lose 0:42 6 1152.5

Lose 1:07 1 940

Table 80. Online Simulation Results for Weak Tactic vs MOEA Tactic

Win/Lose Battle Duration # Units Remaining Average Remaining HP

Lose 0:31 14 1098.21

Lose 0:34 11 1346.27

Lose 0:36 8 1124.25

Lose 0:31 11 1549.64

Lose 0:31 12 1500.83

Lose 0:27 15 1455.53

Lose 0:30 10 1269.9

Lose 0:34 11 1380.09

Lose 0:28 12 1299

Lose 0:41 2 776.5
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Appendix D. Online Simulation Data Sorted by Winner

This appendix takes the data from Appendix C and reorganizes it based on the

simulation’s winner. This helps to compile a quick-look at the statistics attained

when a specific tactic is victorious. Because of this organizational structure, tactics

that lose often do not have as many data points for analysis.

4.1 MOEA Tactic Victory Statistics

Table 81. Statistics for MOEA Tactic Victory against Default Tactic

Battle Duration # Units Remaining Average Remaining HP

0:32 12 758.17

0:40 5 952.8

0:35 7 793.29

0:33 5 339.8

0:29 12 1384.08

0:32 10 1150

0:37 8 1275.38

0:28 8 923.63

0:45 4 1008

0:33 7 778.43

0:33 8 1144.13

0:40 5 811.2

0:35 8 1123.75

0:29 12 1609.08

0:26 12 1329.92

0:25 19 1440.26
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Table 82. Statistics for MOEA Tactic Victory against Proximity Tactic

Battle Duration # Units Remaining Average Remaining HP

0:36 5 664.4

0:28 17 1166.65

0:33 12 920.42

0:40 4 827.25

0:26 15 1118.13

0:45 7 918

0:49 7 1213.14

0:25 14 1066.93

0:31 11 652.55

0:34 11 840.82

1:15 1 49

0:50 5 1448.2

0:41 8 937.13

0:42 7 1210.29
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Table 83. Statistics for MOEA Tactic Victory against Weak Tactic

Battle Duration # Units Remaining Average Remaining HP

0:43 6 1332.5

0:33 8 1105.88

0:33 10 1299.7

0:38 11 1465

0:34 8 1329.63

0:42 5 1150

0:26 15 1141.6

0:37 5 1247.8

0:30 11 1391.73

0:38 7 1396.43

0:31 14 1098.21

0:34 11 1346.27

0:36 8 1124.25

0:31 11 1549.64

0:31 12 1501.83

0:27 15 1455.53

0:30 10 1269.9

0:34 11 1380.1

0:28 12 1299

0:41 2 776.5
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4.2 Default Tactic Victory Statistics

Table 84. Statistics for Default Tactic Victory against MOEA Tactic

Battle Duration # Units Remaining Average Remaining HP

0:28 15 720.67

0:37 9 842.78

0:34 12 841.58

0:42 4 903.5

Table 85. Statistics for Default Tactic Victory against Proximity Tactic

Battle Duration # Units Remaining Average Remaining HP

0:37 5 982.6

1:03 2 1007

0:56 2 210

0:52 4 894.75

0:41 7 1229.43

0:38 11 978.36

0:46 7 768.86

0:44 4 653.25

0:41 5 1112.4

0:36 8 1118.38

0:34 12 1262.42

0:38 10 1073
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Table 86. Statistics for Default Tactic Victory against Weak Tactic

Battle Duration # Units Remaining Average Remaining HP

0:37 7 1268.57

0:37 7 1474.14

0:31 9 1354.89

0:43 4 1401.25

0:45 3 1039

0:41 5 1314.6

0:36 7 1164

0:35 7 1465

0:48 4 1391.25

0:37 9 1257.78

0:39 10 1419.4

0:35 6 1042.5

0:36 6 936.67

0:30 9 1244.22

0:36 9 1296.67

0:38 7 1373.14

0:35 5 1338.2

0:34 7 999.57
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4.3 Proximity Tactic Victory Statistics

Table 87. Statistics for Proximity Tactic Victory against MOEA Tactic

Battle Duration # Units Remaining Average Remaining HP

0:33 13 912.77

0:46 3 672.33

0:44 3 669

0:42 13 783.69

0:39 4 565

0:52 5 815.8

Table 88. Statistics for Proximity Tactic Victory against Default Tactic

Battle Duration # Units Remaining Average Remaining HP

0:30 10 1096.3

0:49 3 418.33

0:40 5 1251.4

0:36 8 1010.25

0:42 5 1281

0:42 5 822.2

0:34 7 1184.71

0:45 4 1077
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Table 89. Statistics for Proximity Tactic Victory against Weak Tactic

Battle Duration # Units Remaining Average Remaining HP

0:46 6 1408.67

0:38 9 1162.11

0:34 10 1522.6

0:49 3 790.33

0:47 3 898.33

0:44 7 1428.71

0:45 8 1090.25

0:44 9 1356.56

0:31 15 1391.13

0:43 8 978.38

0:26 15 993.73

0:34 12 1486.83

0:44 9 1380.89

0:34 11 1501.09

0:55 3 1168.67

0:43 11 1386

0:38 12 1353.67

0:41 11 1200.45

0:42 6 1152.5

1:07 1 940
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4.4 Weak Tactic Victory Statistics

Table 90. Statistics for Weak Tactic Victory against MOEA Tactic

Battle Duration # Units Remaining Average Remaining HP

N/A N/A N/A

Table 91. Statistics for Weak Tactic Victory against Default Tactic

Battle Duration # Units Remaining Average Remaining HP

0:45 7 1215.71

0:39 7 996.86

Table 92. Statistics for Weak Tactic Victory against Proximity Tactic

Battle Duration # Units Remaining Average Remaining HP

N/A N/A N/A
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